Posisjonssystemet vårt gjør det mulig å skrive uendelig mange tall ved hjelp av bare ti siffer. Systemet er utviklet og effektivisert gjennom mange hundreår, som gjør at elever trenger tid for å utvikle en god forståelse for posisjonssystemet. Forståelsen for posisjonssystemet settes på en ekstra prøve når elevene møter desimaltall, og det er her vi finner de fleste misoppfatningene knyttet til…
Denne artikkelen bygger på artikkelen «Begrepslæring og begrepsforståelse i matematikk». Der ser vi på ulike typer begrep og begrepsstrukturer. Her vil vi se på begrepene brøk og desimaltall. Artikkelen forteller noe om vanskeligheter elever kan møte når de arbeider med brøk og desimaltall.
Når elevene begynner på et nytt klassetrinn eller en ny skole etter sommerferien, er ofte de første matematikktimene satt av til repetisjon, og når påsken nærmer seg, stresser lærere for å bli ferdig med «pensum» for å ha nok tid til repetisjon og øving. Repetisjon og øving kan med andre ord legge beslag på store deler av skoleåret. Likevel er resultatene som oftest ikke så gode som vi ønsker.…
Helt siden det ble obligatorisk med digitale verktøy til eksamen, har GeoGebra hatt en sterk plass i den norske skolen. Programmet har likevel ikke fått den plassen det fortjener. Det kan brukes til mer enn å tegne og tolke grafer.
Denne artikkelen skal vise hvordan man kan bruke programmet til å oppnå dybdelæring gjennom utforskning og resonnering.
Regneark har lenge vært brukt i skolen, oftest til økonomiske beregninger. Men regneark er også et godt hjelpemiddel til å modellere andre situasjoner. Når elevene lager egne regneark er utforsking, problemløsing og generalisering sentralt. Oversiktlige diagrammer er ofte bare et tastetrykk unna og sammen med muligheten for fargede celler, rader og kolonner kan regneark gi god støtte i…
Kommunikasjon og matematiske samtaler, Kompetanseutvikling i matematikk, Representasjoner, Utforskende og ambisiøs matematikkundervisning
Ambisiøs Matematikkundervisning bygger på fire prinsipper som må ses i sammenheng med hverandre: Matematikken skal være meningsfull – Alle elever skal ha likeverdig tilgang til å lære matematikk – Undervisningen skal ha tydelige læringsmål – Kunnskap om elevene som lærende.
Mønster brukes i mange sammenhenger og på flere fagområder. I LK20, læreplan for matematikk, knyttes mønster til kjerneelementet Utforsking og problemløsing. Utforsking defineres som å lete etter mønster, finne sammenhenger og diskutere seg fram til en felles forståelse.
Problemløsning, Utforskende og ambisiøs matematikkundervisning
Problemløsing har hatt en sentral plass i læreplaner for matematikk siden Mønsterplanen fra 1987. I LK20 løftes problemløsing fram gjennom kjerneelementet Utforsking og problemløsing. Elevene bør få eksplisitt opplæring i noen sentrale problemløsingsstrategier allerede fra de første skoleårene.
Artikkelen er inspirert av 5 Practices for Orhestresting Productive Mathematics Discussions. I tillegg til de fem praksisene inneholder artikkelen også avsnitt om mål for undervisningen, valg av oppgave som fremmer målet, hvordan oppgaven kan presenteres og vurderinger læreren bør gjøre seg i etterkant av gjennomført undervisning.
Problemløsning, Utforskende og ambisiøs matematikkundervisning
Gjennom utforskende (inquiry basert) undervisning skal elevene utforske og undersøke en matematisk problemstilling. De skal planlegge løsningsmetoder, forklare og begrunne løsningene, og oppmuntres til å stille nye spørsmål som de skal prøve å finne svar på.
Utforskende undervisning skiller seg fra undervisning basert på et oppgaveparadigme, der elevene lærer hvordan de skal løse oppgaven…