The Niels Henrik Abel Contest 1994

Problem 1

What is the least number of children in a family such that every child has at least one sister and one brother?

A) 2

B) 3

C) 4

D) 5

E) 6

Problem 2

The expression $\sqrt{8} + \sqrt{18}$ equals

A) 12

B) $\sqrt{54}$

C) $\sqrt{50}$

D) 7 E) $\sqrt{26}$

Problem 3

The figure shows a octagon where all angles are straight. With sides the lengths as shown on the figure, what is the area of the octagon?

A) $5a^2 + 2a + 1$ B) 12a + 12 C) $5a^2 + 10a + 1$

D) $7a^2 + 12a + 1$ E) $7a^2 + 10a + 3$

Problem 4

Let ABC be a triangle such that $\angle A = 55^{\circ}$, $\angle B = 75^{\circ}$, D lies AC, E lies on BC, and CD = CE. What is $\angle CED$?

B) 55° C) 60° D) 65° E) 70°

Problem 5

Let x = -y, where y > 0. Which of the following statements is wrong?

A)
$$x^2 y > 0$$

$$B) x + y = 0$$

C)
$$xy < 0$$

$$D) \frac{1}{x} - \frac{1}{y} = 0$$

A)
$$x^2y > 0$$
 B) $x + y = 0$ C) $xy < 0$ D) $\frac{1}{x} - \frac{1}{y} = 0$ E) $\frac{x}{y} + 1 = 0$

Problem 6

We have three circles with diameters 1, 2, and 3, as shown in the figure. What proportion of the large circle does the collored region make up?

A) $\frac{1}{3}$ B) $\frac{1}{2}$ C) $\frac{2}{3}$ D) $\frac{\sqrt{5}}{3}$

E) None of these

Problem 7

If you cut an A4-sheet on the middle, you get an A5-sheet. The A5-sheet has the same shape as the A4-sheet. What is the quotient between the lengths of the long and the short side of the A4-sheet?

A)
$$\sqrt{2}$$

$$C) \frac{1+\sqrt{5}}{2}$$

A) $\sqrt{2}$ B) $\frac{3}{2}$ C) $\frac{1+\sqrt{5}}{2}$ D) 2 E) None of these

Problem 8

If $x^2 = x + 3$, then x^3 equals

A)
$$x + 6$$

B)
$$x^2 + 3x + 3$$
 C) $4x + 3$ D) $4x^2 + 3$ E) $x^2 + 27$

C)
$$4x + 3$$

D)
$$4x^2 + 3$$

E)
$$x^2$$

Problem 9

A bug walks inside a cubic room with lengths of sides 1 metre. It starts in one of the lower corners and walks to the opposite corner by the roof. How far must it walk if it chooses the shortest path?

B) $\sqrt{5}$

C) 3 D) $1 + \sqrt{2}$

Problem 10

If n men can produce n samples of a product by working n hours a day for ndays, how many samples will m men produce by working m hours a day form mdays?

A)
$$\frac{n^3}{m^2}$$

A)
$$\frac{n^3}{m^2}$$
 B) $\frac{m^3}{n^2}$ C) $\frac{n^2}{m^3}$ D) $\frac{m^2}{n^3}$ E) m

$$C) \frac{n^2}{m^3}$$

$$D) \frac{m^2}{n^3}$$

Problem 11

Let $y = \frac{1}{1 + \frac{y}{x}}$ and $z = \frac{1}{1 + \frac{z}{y}}$. If z = 2, then x equals

A) -4 B) 2 C) $\frac{12}{5}$ D) $\frac{16}{5}$ E) 3

Problem 12

Which of the numbers $\sqrt{2}$, $\sqrt[3]{3}$, $\sqrt[4]{4}$, and $\sqrt[5]{5}$ is the least?

B) $\sqrt[3]{3}$ C) $\sqrt[4]{4}$ D) $\sqrt[5]{5}$ E) Two of them are the least

Problem 13

When multiplying $\left(3x^2 + \frac{2}{x}\right)^3$, we get a term that does not containt x. This term

A) 6

B) 12

C) 18

D) 36

E) 54

Problem 14

7, 8, 9, 10}? (Note that 2/4 = 1/2.)

A) 34

B) 50

C) 51

D) 63

E) 90

Problem 15

A car drives a certain distance. The first sixth of the distance, the speed is 10 km/h; on the next two thirds, the speed is 20 km/h; and on the last sixth of the distance, the speed is 30 km/h. What is the average speed for the entire distance?

A) 16 km/h

B) 18 km/h

C) 20 km/h

D) 22 km/h

E) 24 km/h

Problem 16

A circular disk is cut into as many pieces as possible using 7 straight lines. How many pieces are attainable?

A) 14

B) 29

C) 35

D) 49

E) 128

Problem 17

If a and b are natural numbers $(a, b \in \{1, 2, 3, \ldots\})$ and a + b + ab = 54, then a + b equals

A) 12

B) 14

C) 15

D) 16

E) 17

Problem 18

Let $y = \sqrt{2 + \sqrt{2}}$, $z = \sqrt{2 - \sqrt{2}}$, and x = y + z. Then x equals

B) 2y C) 4 D) 2z E) $z\sqrt{2}$

Problem 19

What is the greatest number of lines that can be drawn in the plane and such that each of the lines intersects exactly 4 of the other lines?

A) 5

B) 8

C) 10

D) 16

E) Infinitely many

Problem 20

We define a function f on the integers by f(x) = x/10 if x is divisible by 10, and f(x) = x + 1 if x is not divisible by 10. Let $a_0 = 1993$ and $a_{n+1} = f(a_n)$. What is the smallest n such that $a_n = 1$?

A) 19

B) 25

C) 52

D) 1992

E) a_n never equals 1