

The Niels Henrik Abel Contest 1998–99 FINAL

March 12th 1999

Problem 1

- a) Determine a function f(x) such that $f(t^2 + t + 1) = t$ for all real numbers $t \ge 0$.
- b) Prove that for all real numbers a, b, c, d and e, the inequality

$$a^{2} + b^{2} + c^{2} + d^{2} + e^{2} \ge a(b + c + d + e)$$

applies.

Problem 2

- a) Find all integers m and n such that $2m^2 + n^2 = 2mn + 3n$.
- **b)** Given positive integers a, b and c such that a^3 is divisible by b, b^3 is divisible by c, and c^3 is divisible by a, prove that $(a + b + c)^{13}$ is divisible by abc.

Problem 3

Let $\triangle ABC$ be an isosceles triangle with AB = AC and $\angle A = 30^{\circ}$. The triangle is inscribed in a circle with centre O. The point D lies on the arch between A and C such that $\angle DOC = 30^{\circ}$. Let G be the point on the arch between A and B such that DG = AC and AG < BG. The line DG intersects AC and AB in E and F respectively.

- a) Prove that $\triangle AFG$ is equilateral.
- **b)** Find the ratio between the areas $\Delta AFE/\Delta ABC$.

Problem 4

Let S be the set $\{1, 2, 3, ..., 10\}$. For every non-empty subset R of S, we define the alternating sum A(R) in the following way: If $\{r_1, r_2, ..., r_k\}$ are the elements of R ordered in increasing order, the alternating sum is $A(R) = r_k - r_{k-1} + r_{k-2} - \cdots - (-1)^k r_1$, where + and - comes alternatingly. Eg., the alternating sum of $\{1, 3, 4, 7\}$ is 7 - 4 + 3 - 1 = 5.

- a) Is it possible to write S as a union of two non-intersecting sets having the same alternating sum?
- b) Let $\{R_1, R_2, \ldots, R_n\}$ be the set of all non-empty subsets of S. Determine the sum $A(R_1) + A(R_2) + \cdots + A(R_n)$.