9 Følger/Lister

Det er ganske mye du kan få til i GeoGebra ved å bruke følger. En følge er i GeoGebra en liste definert ut fra en eksplisitt formel. Du lager en følge ved å skrive kommandoen

Følge(<Uttykk>,<Variabel>,<Fra>,<Til>,<Trinnlengde>)

Dersom du ikke oppgir trinnlengde blir den satt til 1. Vi illustrerer dette med noen eksempler. Vi skal senere bruke følger til å simulere statistiske forsøk.

Tabell 9.1 side 127 viser en oversikt over de viktigste kommandoene.

9.1 Eksempler

Eksempel 9.1

Lag en liste over de 10 første oddetallene. Lag også en følge der element nummer n er summen av de n første oddetallene.

Løsning:

Vi skriver inn kommandoen Følge(2n-1, n, 1, 10). Her er det med andre ord n som varierer fra 1 til 10, og den eksplisitte formelen er 2n - 1.

Vi får følgende liste:

l1= {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}

For å finne summene av de k første elementene i denne følgen, bruker vi kommandoen Sum(l1, k). Dersom du vil finne summen av alle elementene i en liste skriver du Sum(l1).

I vårt eksempel skriver vi derfor inn Følge (Sum(l1, k), k, 1, 10). Vi får da listen

 $\{1, 4, 9, 16, 25, 36, 49, 64, 81, 100\}$

Eksempel 9.2

En følge er definert ved at $a_1 = 1$ og $a_{n+1} = 3a_n - 1$. Lag en liste over de 10 første elementene.

Løsning:

Vi har her en rekursiv formel for følgen. Vi bruker da kommandoen

IterasjonListe(<Funksjon>, <Start>, <Antall iterasjoner>)

I dette eksempelet skriver vi derfor inn IterasjonListe[3x-1, 1, 10). Merk at vi må bruke *x* som variabel her.

Lag en liste bestående av de 100 første kvadrattallene.

Eksempel 9.3

Vi skal i dette eksempelet simulere n terningkast, der n er et tall som skal variere på en glider.

a) Velg verktøyet *Glider* and og klikk i grafikkfeltet der du ønsker å plassere glideren. I vinduet som da kommer opp kaller du glideren for *n*, velger «Min» til å være 1 og «Maks» til 500. Sett «Animasjonstrinn» til å være 1. Se figur 9.1.

Navii		
n = 1		
O Tall	O Vinkel	Heltall
Intervall	Glider	Animasjon
Min:	Maks: Anim	asjonstrinn:
1	500 1	

Figur 9.1: Glideren n kan varieres fra n = 1 til n = 500.

- b) Skriv inn L=Følge(TilfeldigMellom(1, 6), i, 1, n) i algebrafeltet. Du får da en liste med *n* tilfeldige tall mellom 1 og 6.
- c) Skriv inn tallene fra 1 til 6 i cellene A1 til A6 i regnearket.
- d) Skriv inn TellDersom(x == A1, L) i B1, og autokopier denne formelen ned til og med celle B6. (To likhetstegn betyr at GeoGebra skal teste om noe er likt). Vi har nå laget en frekvenstabell over alle kastene.
- e) Det kan være gunstig å regne ut relativ frekvens slik at radhøydene ikke varierer for mye når vi øker *n*. I C1 skriver vi derfor =B1/n og autokopierer denne formelen ned til og med C6.
- f) Skriv inn Søylediagram({1, 2, 3, 4, 5, 6},C1:C6) i algebrafeltet. Du vil da få et søyeldiagram som viser relativ frekvens til antall øyne på terningene.

9.2 Snorkunst i GeoGebra

Det er ikke kun tallfølger vi kan jobbe med i GeoGebra, noe følgende eksempel viser.

For å lage en fin «snorkunst» skriv vi i algebrafeltet:

Følge((0,k/10), k, 1, 10) og Følge((k/10,0),k,1,10)

Vi får vil da få to lister l1 og l2 med punkt. Skriv deretter inn

Følge(Linjestykke(Element(l1,i),Element(l2,11-i)),i,1,10)

Vi får da en følge med 10 linjestykker som til sammen utgjør en nokså estetisk figur!

Vi vil nå ta dette et steg videre. Kanskje 10 linjestykker var litt i det minste laget? Vi vil derfor lage *m* linjestykker, der *m* varierer langs en glider. Her er hva vi må gjøre:

- Lag en glider m som varierer mellom 1 og 100 og med animasjonstrinn 1.

```
Skriv inn kommandoene
L=Følge((0,k/m), k, 1, m),
M=Følge((k/m,0), k, 1, m) og
Følge(Linjestykke(Element(L, i), Element(M, m+1-i)), i, 1, m)
```

– Nå kan du variere glideren *m* for å endre antall linjestykker.

Oppgave 9.2

Tegn en sirkel med radius 1 og sentrum i origo ved skrive inn likningen for sirkelen, $x^2 + y^2 = 1$, i algebrafeltet. Del sirkelen i *m* like store deler, der *m* er en glider som varierer fra 1 til 30. (Se figur 9.2)

Tips: Du kan få glede av kommandoen Roter(<Objekt>,<Vinkel>,<Punkt>).

Figur 9.2: Her er m= 13 punkt fordelt likt ut over en sirkel.

Oppgave 9.3 Se om du klarer å lage følgende linjedesign:

Tips: Du kan få glede av kommandoen Punkt/<Punkt>,<Vektor>). Med denne kan du tegne inn m punkt langs en vektor \vec{u} ved å skrive inn

Følge(Punkt(A, k/m*u), k, 1, m).

I tabell 9.1 finner du en oversikt over de viktigste kommandoene du kan bruke på lister. Du finner en komplett liste under Hjelp for inntasting (under kategorien «Liste»).

Kommando	Forklaring
Min(<liste>)</liste>	Gir det minste elementet i listen
Maks(<liste>)</liste>	Gir det største elementet i listen
Følge(<uttrykk>, <variabel>,<fra>,<til>)</til></fra></variabel></uttrykk>	Gir ei liste av objekter som blir laget ved å anvende det gitte uttrykket i den gitt variabel fra et tall til et annet.
Følge(<uttrykk>,<variabel>,<fra>,<til>,t)</til></fra></variabel></uttrykk>	Samme som over, men oppgir i tillegg hva trinnlengden <i>t</i> skal være.
Sum(<liste>)</liste>	Beregner summen av alle elementene i lista.
<pre>Sum(<liste>,<antall elementer="" n="">)</antall></liste></pre>	Beregner summen av de første <i>n</i> elementene i lista.
<pre>Element(<liste>,<posisjonen elementet="" til="">)</posisjonen></liste></pre>	Gir det <i>n</i> -te elementet i lista
TellDersom(<vilkår>,<liste>)</liste></vilkår>	Teller antall elementer i lista som tilfredsstiller vilkåret.
<pre>IterasjonListe(f(x), a, m)</pre>	Gir ei liste med <i>m</i> elementer der det første elementet a_1 er <i>a</i> , det andre er a_2 er $f(a_1)$. Mer generelt er $a_{n+1} = f(a_n)$.
Lengde(<liste>)</liste>	Gir lengden på lista, dvs. antall elementer.
Sorter(<liste>)</liste>	Sorterer ei liste av tall, tekstobjekter eller punkter.
BrukDersom(<vilkår>,<liste>)</liste></vilkår>	Lager ei ny liste som bare inneholder elementene i den opprinnelige lista som oppfyller vilkåret.

Tabell 9.1: Ulike kommandoer på lister

9.3 Oppgaver

Oppgave 9.4

Lag en liste over de 50 første oddetallene. Kan du gjøre det på mer enn én måte?

Oppgave 9.5

Lag en liste over de 50 første kvadrattallene. Kan du gjøre det på mer enn én måte?

Oppgave 9.6

Bruk følge-kommandoen til å lage 11 punkt på *x*-aksen som vist nedenfor.

Lag en liste over alle primtall mindre enn 500. Hva er primtall nummer 30? Hvor mange primtall er det under 500?

Oppgave 9.8

Lag en liste L bestående av elevene i en av gruppene dine. Bruk kommandoen Utvalg til å velge 5 tilfeldige elever fra gruppen.

Oppgave 9.9

Lag en liste bestående av *n* punkt på linjen y = x som vist på figuren nedenfor. Her skal *n* være en glider med heltallige verdier.

Oppgave 9.10

Lag følgende figur ved å bruke Følge-kommandoen:

Lag «snorkunst» som vist på figuren nedenfor.

Oppgave 9.12

Simuler 100 kast med en terning. Representer resultatet grafisk ved hjelp av et søylediagram.

Oppgave 9.13

Lag en simulering der du kaster 1000 punkt tilfeldig ut i et kvadrat med sider lik 10. Du kan bruke kommandoen random() til dette.

Vi kan løse en del likninger ved hjelp av iterasjoner. Anta at vi kan skrive likningen på formen

x = f(x)

Vi kan da definere følgen a_n ved $a_n = f(a_{n-1})$. Dersom denne konvergerer, så må den konvergere mot en av løsningene til likningen x = f(x) (avhengig av hvilken verdi vi gir a_1).

- a) Hvilken likning løses med kommandoen IterasjonListe[cos(x), 1,100]?
- b) Løs likningen $e^{x-2} x = 0$ ved hjelp av iterasjoner.

Oppgave 9.15

Vi kan løse en del likninger ved å bruke Newtons metod. Dersom vi skal løse likningen f(x) = 0, så definerer vi følgen

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Kommandoen IterasjonListe vil da kunne gi oss en liste med stadig bedre løsninger. Her må vi velge en startverdi.

Bruk Newtons metode til å løse likningen $e^x = 3$.