Denne teksten tar utgangspunkt i en oppgave fra kengurukonkurransen. Det er endret på noen forutsetninger i oppgaven slik at det gir muligheter for dybdelæring. Teksten beskriver arbeid med denne oppgaven i ei økt med en 7.klasse.
Oppgaver med skålvekter eller kjøkkenvekter, er likhetstrekket mellom de oppgavene jeg her vil se nærmere på. Jeg ønsker å trekke fram noen problemløsningsstrategier jeg mener er spesielle for denne type oppgaver.
Det finnes likehetstrekk mellom noen av oppgavene i Kengurukonkurransen. I enkelte oppgaver brukes terninger på en eller annen måte, andre har tallkort eller pusselbrikker som etfelles element. Oppgaver med skålvekter eller kjøkkenvekter, er likhetstrekket mellom de oppgavene jeg her vil se nærmere på.
En tallinje er en romlig (som oftest lineær) representasjon av tall, som støtter matematisk forståelse, og den kan tydeliggjøre sammenhenger mellom måling, tall og statistikk. Hva sier forskninga om bruk av tallinja?
Mange elever tror at likhetstegnet betyr "her kommer svaret". Å lese likhetstegn som "blir" eller "er" kan føre til et operasjonelt syn på ekvivalens og likhetstegnet, og bygge opp under slike misoppfatninger. Hva sier forskninga?
Begreper om tid er komplekst og fundamentalt for læring både innenfor og utenfor matematikk, og bygger på språk, romforståelse og hukommelse. Hva sier forskninga om utvikling av begreper om tid?
Utvikling av tallforståelse framheves i mange studier som svært viktig for elevenes læring av matematikk. Men det er ikke åpenbart hva tallforståelse innebærer.
I artikkelen presenteres det en kort beskrivelse av fem komponenter i matematisk kompetanse, og det drøftes ulike aspekter ved tallforståelse innen hver komponent. De ulike aspektene er utviklet gjennom en gjennomgang av…
Proporsjonal resonnering innebærer forståelse av proporsjonalitet – endring og kontinuitet i relasjoner – og skal integreres og kobles sammen på tvers av matematiske områder. Hva sier forskninga om utvikling av proposjonal resonnering i matematikk?
Elever som har utviklet gode romlige ferdigheter tidlig, har bedre utgangspunkt for å mestre matematikk og andre fag. Ferdighetene kan blant annet kobles til en mental tallinje. Hva sier forskningen om tidlig utvikling av romforståelse?