Små barn utvikler strategier for å løse matematiske problemer naturlig i sin hverdag. Barna kan konstruere løsninger til en mengde problemer uten formell undervisning i tallfakta, algoritmer eller prosedyrer. Når barna begynner på skolen, har de en uformell eller intuitiv kunnskap om matematikk som danner grunnlaget for deres videre utvikling av forståelse i matematikk.
I en av oppgavene fra Kengurukonkurransen 2015 skal man finne hvor mange penger Magnus hadde før han kjøpte tre leketøy til ulik pris. Det er ganske mange opplysninger i teksten, men opplysningene følger et system. Han betaler hele tida halvparten av det beløpet han har pluss 1, 2 eller 3 euro i tillegg.
Dette var en krevende oppgave i settet, og det som gjør den utfordrende er…
Argumentasjon, Kommunikasjon og matematiske samtaler, Regnestrategier
Matematiske diskusjoner og kommunikasjon fremheves som avgjørende for elevers forståelse og læring i matematikk.
Denne artikkelen fokuserer på hvordan lærere kan bruke matematiske samtaler til å fremme elevers tenkning og læring i matematikk. Den beskriver redskaper som kan brukes for å implementere diskusjoner i matematikk og for i større grad å involvere elevers tenkning i…
En del kenguruoppgaver består av bilder med lite tekst, og disse oppgavene kan egne seg godt for elever på småtrinnet. Oppgavene går ofte ut på å sammenligne figurer, se et mønster, finne brikken som mangler i et puslespill, finne veien gjennom en labyrint eller gjøre enkle opptellinger.
Denne artikkelen presenterer noen eksempler på oppgaver som kan passe for denne aldersgruppa.…
Hensikten med Kengurukonkurransen er å motivere elever for matematikk. Oppgavene skal være en blanding av enkle, morsomme, interessante, middels vanskelige og utfordrende oppgaver.
I denne teksten ser vi nærmere på én av oppgavene, og hvordan noen elever har løst den.
Pascals talltrekant er en av de mest berømte trekanter vi kjenner til. Denne trekanten er full av spennende mønstre. I dag lar matematikkinteresserte seg begeistre av mulighetene til å utforske de mange mønstrene i trekanten – til og med skjulte mønstre utenfor trekanten!
I grunnskolen er brøk et gjennomgående tema. Mange elever opplever at brøk er vanskelig å forstå, og de husker ikke hvordan de skal utføre regneoperasjonene. I større etterutdanningsforløp som matematikksenteret har ansvar for, blir brøk ofte ønsket som tema på kurs og i demonstrasjonsundervisning.