Mønster brukes i mange sammenhenger og på flere fagområder. I LK20, læreplan for matematikk, knyttes mønster til kjerneelementet Utforsking og problemløsing. Utforsking defineres som å lete etter mønster, finne sammenhenger og diskutere seg fram til en felles forståelse.
Denne teksten tar utgangspunkt i en oppgave fra kengurukonkurransen. Det er endret på noen forutsetninger i oppgaven slik at det gir muligheter for dybdelæring. Teksten beskriver arbeid med denne oppgaven i ei økt med en 7.klasse.
Representasjoner, Tallforståelse, Utforskende og ambisiøs matematikkundervisning
Kenguruoppgavene er flervalgsoppgaver med fem svaralternativer. Noen av svaralternativene er valgt ut fra feilsvar vi kan forvente, mens andre er mer eller mindre tilfeldig valgt.
Oppgavene er ikke pilotert, noe som ofte gjøres for å finne feilsvar ut fra gitte kriterier. Likevel er det fullt mulig å utnytte ressursen som ligger i flervalgsoppgaver til å berike og utvide den…
Argumentasjon, Dybdelæring, Kommunikasjon og matematiske samtaler
Når elever arbeider med LIST ressurser, er lærerens oppgave å veilede dem i utforsking av matematikk. Elever kan utforske den samme oppgaven på ganske ulike vis, med ulike strategier og ved hjelp av ulike representasjoner. Det kan derfor være en utfordring å stille de riktige spørsmålene – på riktig tidspunkt.
Mange av oppgavene fra Kengurukonkurransen er problemløsningsoppgaver som egner seg til å bruke i den ordinære matematikkundervisningen. Oppgavene dekker fagemnene tall og algebra, geometri og logikk.
Utvikling av tallforståelse framheves i mange studier som svært viktig for elevenes læring av matematikk. Men det er ikke åpenbart hva tallforståelse innebærer.
I artikkelen presenteres det en kort beskrivelse av fem komponenter i matematisk kompetanse, og det drøftes ulike aspekter ved tallforståelse innen hver komponent. De ulike aspektene er utviklet gjennom en gjennomgang av…
Kommunikasjon og matematiske samtaler, Kompetanseutvikling i matematikk, Representasjoner, Utforskende og ambisiøs matematikkundervisning
Ambisiøs Matematikkundervisning bygger på fire prinsipper som må ses i sammenheng med hverandre: Matematikken skal være meningsfull – Alle elever skal ha likeverdig tilgang til å lære matematikk – Undervisningen skal ha tydelige læringsmål – Kunnskap om elevene som lærende.
Kommunikasjon og matematiske samtaler, Problemløsing, Representasjoner, Utforskende og ambisiøs matematikkundervisning
I denne artikkelen presenteres en problemløsingsoppgave som brukes til å gi elevene muligheter for resonnement og problemløsing, til å bruke og utvikle matematiske representasjoner, bli oppmuntret til meningsfulle matematiske samtaler, oppleve at det å streve lenge med en oppgave og gjøre feil underveis kan bidra til ny innsikt og læring, og at samarbeid med andre elever gir stor gevinst, både…
Argumentasjon, Dybdelæring, Kommunikasjon og matematiske samtaler, Utforskende og ambisiøs matematikkundervisning
Australske universiteter har siden 1970-tallet brukt det de kaller «whiteboarding» (Forrester, Sandison & Denny, 2017). Det innebærer å bruke whiteboardtavler som et verktøy i matematikkundervisningen for å fremme høyere ordens tenking og resonnering i tillegg til samarbeidslæring. Elevene skal stå foran tavlene (som må kunne pusses av) i små grupper og løse matematikkproblemer. …
Kommunikasjon og matematiske samtaler, Kompetanseutvikling i matematikk, Utforskende og ambisiøs matematikkundervisning
Matematiske samtaler og diskusjoner har stor betydning for elevenes utvikling av dybdelæring og forståelse i matematikk. Å legge til rette for produktive matematiske diskusjoner samtidig som en leder elevene mot målet for timen er kjernen i god matematikkundervisning, og det er kanskje det mest utfordrende aspektet ved lærerens undervisning.