GeoGebra, Utforskende og ambisiøs matematikkundervisning
GeoGebra gir elevene mulighet til å utforske geometriske sammenhenger på måter som ikke er mulig med papir og blyant. Programmet inneholder mange nyttige verktøy, og i denne artikkelen presenterer jeg ett av de mer ukjente, nemlig Penn. Jeg viser også hvordan Penn kan støtte elevene når de utforsker geometriske sammenhenger i GeoGebra.
Observasjon er viktig i matematikkfaget, i andre fag og i dagliglivet. Erfaringer fra klasserommet har vist at elever strever med å observere i matematikk. De er usikre på hva som er relevant i en gitt situasjon og hva de skal se etter.
I denne artikkelen skal vi derfor se nærmere på observasjon og hvordan elever kan bli bedre til å observere.
Camilla Normann Justnes, Ingunn Valbekmo, Svein H. Torkildsen
Kompetanseutvikling i matematikk, Organisasjonsutvikling, Representasjoner
Studier av overgangssituasjoner viser at alle overganger byr på muligheter som ansatte i barnehager og skoler kan gripe fatt i. I overgangen oppstår ofte et brudd i kontinuitet. Dersom ansatte i barnehagen og lærere i skolen sammen kan skape kontinuitet for barn og unge, vil det være med på å trygge overgangssituasjonene.
Når barnehager og skoler samarbeider om å skape sammenheng i…
Kompetanseutvikling i matematikk, Organisasjonsutvikling
The article focuses on Teacher Time Outs (TTOs) in rehearsals and co-enactments as part of a practice-based approach to professional development, aiming to support teachers’ learning of ambitious mathematics teaching.
En tallinje er en romlig (som oftest lineær) representasjon av tall, som støtter matematisk forståelse, og den kan tydeliggjøre sammenhenger mellom måling, tall og statistikk. Hva sier forskninga om bruk av tallinja?
Mange elever tror at likhetstegnet betyr "her kommer svaret". Å lese likhetstegn som "blir" eller "er" kan føre til et operasjonelt syn på ekvivalens og likhetstegnet, og bygge opp under slike misoppfatninger. Hva sier forskninga?
Begreper om tid er komplekst og fundamentalt for læring både innenfor og utenfor matematikk, og bygger på språk, romforståelse og hukommelse. Hva sier forskninga om utvikling av begreper om tid?
Kommunikasjon og matematiske samtaler, Kompetanseutvikling i matematikk, Representasjoner, Utforskende og ambisiøs matematikkundervisning
Ambisiøs Matematikkundervisning bygger på fire prinsipper som må ses i sammenheng med hverandre: Matematikken skal være meningsfull – Alle elever skal ha likeverdig tilgang til å lære matematikk – Undervisningen skal ha tydelige læringsmål – Kunnskap om elevene som lærende.
Proporsjonal resonnering innebærer forståelse av proporsjonalitet – endring og kontinuitet i relasjoner – og skal integreres og kobles sammen på tvers av matematiske områder. Hva sier forskninga om utvikling av proposjonal resonnering i matematikk?