Hopp til hovedinnhold

Secondary navigation

  • Aktuelt
  • Om senteret
  • Nettbutikk
  • English
Logo for Matematikksenteret Logo for matematikksenteret

Main navigation

  • Aktiviteter
  • Faglitteratur
  • Forskning
  • Utviklingssamarbeid
  • Konferanser og nettverk
  • Konkurranser
  • Ressurser for skole og barnehage
  • Yrkesfag
  • Nasjonal satsing - Meningsfull matematikk

Mobile menu

  • Aktiviteter
  • Faglitteratur
  • Forskning
  • Utviklingssamarbeid
  • Konferanser og nettverk
  • Konkurranser
  • Ressurser for skole og barnehage
  • Yrkesfag
  • Nasjonal satsing - Meningsfull matematikk
  • Aktuelt
  • Om senteret
  • Nettbutikk
  • English
Icon/CalculatorArrow-circleIcon/PuzzleIcon/CaretIcon/CaretIcon/CheckedIcon/ClockIcon/DownloadIcon/ExternalIcon/FacebookIcon/FilmIcon/GalleryIcon/GrunnskoleIcon/HamburgerIcon/ImageIcon/ListIcon/XLyspære_transparentIcon/MailIcon/MinusIcon/PDFIcon/PersonPerson_transparentPersoner_transparentIcon/PlusIcon/PrinterPuslespill_transparentSnakkebobler_transparentSpørsmålstegn_transparentIcon/Tag-pinTriangleIcon/TwitterIcon/DiplomIcon/WordIcon/ansatteIcon/arbeidspakkerIcon/besoksadressecheckbox-checkedcheckbox-uncheckedIcon/close-whiteelektro_transparentIcon/errorevighet_transparentfraktaler_transparentgraf_transparentgresk_transparentgrid-whiteGeogebra - Grunnskole v3handlekurvhjerne_transparentIcon/hvemsvarerGeoGebra - KikoraIcon/Light bulbIcon/TrophyIcon/Glasseslinjal_gradskive_transparentlinjer_transparentlist-whiteIcon/Bookpasser_transparentIcon/phoneIcon/postadresseGroup 2GroupIcon/DirectionIcon/ressurspersonerIconsirkel_transparentTemateselering_transparenttetraeder_transparenttrekant_transparentvinkel_transparentvolum_transparent

Navigasjonssti

Du er her: Hjem Publikasjoner

Publikasjoner

33 treff

Filtrer og søk i publikasjoner

Forskningsomrade
  • Argumentasjon
  • Dybdelæring
  • GeoGebra
  • Kommunikasjon og matematiske samtaler
  • Kompetanseutvikling i matematikk
  • Matematikk i barnehagen
  • Matematikkvansker
  • Organisasjonsutvikling
  • Problemløsing
  • Regnestrategier
  • Representasjoner
  • Tallforståelse
  • Tilpassa opplæring
  • Utforskende og ambisiøs matematikkundervisning
Type
  • Artikkel
  • Notat
  • (-) Miniartikkel
  • (-) Bok-kapittel
Nullstill søk
Minimer

Ligningssett i kontekst

Anne-Gunn Svorkmo
Problemløsing, Regnestrategier
2021
Oppgaver med skålvekter eller kjøkkenvekter, er likhetstrekket mellom de oppgavene jeg her vil se nærmere på. Jeg ønsker å trekke fram noen problemløsningsstrategier jeg mener er spesielle for denne type oppgaver.

Brøk som flervalg

Morten Svorkmo
Representasjoner, Tallforståelse, Utforskende og ambisiøs matematikkundervisning
2021
Kenguruoppgavene er flervalgsoppgaver med fem svaralternativer. Noen av svaralternativene er valgt ut fra feilsvar vi kan forvente, mens andre er mer eller mindre tilfeldig valgt.

Oppgavene er ikke pilotert, noe som ofte gjøres for å finne feilsvar ut fra gitte kriterier. Likevel er det fullt mulig å utnytte ressursen som ligger i flervalgsoppgaver til å berike og utvide den…

Hvordan stille gode spørsmål i arbeid med LIST- oppgaver?

Ingunn Valbekmo
Argumentasjon, Dybdelæring, Kommunikasjon og matematiske samtaler
2021
Når elever arbeider med LIST ressurser, er lærerens oppgave å veilede dem i utforsking av matematikk. Elever kan utforske den samme oppgaven på ganske ulike vis, med ulike strategier og ved hjelp av ulike representasjoner. Det kan derfor være en utfordring å stille de riktige spørsmålene – på riktig tidspunkt.

Utforsking med kenguruoppgaver

Anne-Gunn Svorkmo
Utforskende og ambisiøs matematikkundervisning
2021
Mange av oppgavene fra Kengurukonkurransen er problemløsningsoppgaver som egner seg til å bruke i den ordinære matematikkundervisningen. Oppgavene dekker fagemnene tall og algebra, geometri og logikk.

Problemløsing - også i barnehagen

Camilla Normann Justnes
Matematikk i barnehagen, Problemløsing, Regnestrategier
2018
I en problemløsingssituasjon er vi i ukjent terreng, der det ikke er åpenbart for oss hvordan vi kan løse et problem. Dette gjelder også barn. Allerede fra veldig ung alder engasjerer barn seg i utfordringer og problemer i ukjent terreng basert på et ønske om å oppnå noe.

Det er av stor betydning for senere effektivitet og fleksibilitet i møte med problemer at barn tidlig får…

Hva er det minste eller hva er det største?

Anne-Gunn Svorkmo
Problemløsing
2017
Oppgaver hvor det spørres etter et minste antall eller et største antall av noe, er i utgangspunktet oppgaver med mer enn én løsning. I lærebøker i matematikk for grunnskolen finnes det ikke mange oppgaver av denne typen.

Blant kenguruoppgavene finnes det mange oppgaver hvor det spørres etter det minste eller det største antallet, og jeg vil i denne artikkelen vise noen eksempler…

Er oppgaven ferdig når svaret er funnet?

Morten Svorkmo
Dybdelæring, Problemløsing
2017
I Cadet 2016 var en av oppgavene å finne summen av lengder i en figur bestående av et kvadrat, to trekanter og en firkant. Hvilke matematiske muligheter kan en slik oppgave gi, og hvordan kan en arbeide med oppgaven på en slik måte at elevene utfordres på viktige matematiske ideer?

Temabaserte problemløsingsoppgaver

Anne-Gunn Svorkmo
Problemløsing
2016
Oppgavene i Kengurukonkurransen er delt inn i fire kategorier; tall, algebra, geometri og logiske oppgaver. Kategorien geometri kan igjen deles i to- og tredimensjonale figurer, symmetri, måling, areal og omkrets osv. Hvis man går gjennom tidligere oppgavesett og velger ut noen oppgaver som for eksempel dreier seg om omkrets, vil man få et lite sett med problemløsingsoppgaver med ulike…

Sammen kan vi få det til!

Anne-Gunn Svorkmo
Dybdelæring, Problemløsing
2016
For at kenguruoppgaver i størst mulig grad skal være tilpasset til elever på ulike nivå, finnes det forskjellige oppgavesett. Likevel kan mange av oppgavene i alle de tre oppgavesettene brukes på kryss og tvers uavhengig av nivå og trinn. Når oppgaveideen er god eller problemstillingen interessant, er det ofte bare små justeringer som skal til for at oppgaven kan brukes på høyere eller lavere…

Nykomlingen

Anne-Gunn Svorkmo
Dybdelæring, Problemløsing
2016
En nykomling er i denne sammenhengen en oppgave eller en oppgaveidé som tidligere ikke har vært med i Kengurukonkurransen. Jeg har vist fram og diskutert oppgaven med flere kolleger, og mange av dem har heller ikke løst en slik oppgave. Så det er kanskje ikke bare i kengurusammenheng at dette er en nykomling. Har du sett oppgaven eller noe som ligner, tidligere?

Sider

  • Forrige side ‹‹
  • Side 1
  • Nåværende side 2
  • Side 3
  • Side 4
  • Neste side ››

Logo for NTNU

Postadresse

Matematikksenteret, NTNU
7491 Trondheim

Besøksadresse

Lysholmbygget,
E.C. Dahlsgt. 2, 2. etg.

E-post

kontakt@matematikksenteret.no

Kjernetid

09:00 - 15:00

Hold deg oppdatert!

Få nyheter og info om aktiviteter og læringsressurser gjennom vårt nyhetsbrev.
Meld deg på her

Personvernerklæring

Tilgjengelighetserklæring