Hopp til hovedinnhold

Secondary navigation

  • Aktuelt
  • Om senteret
  • Nettbutikk
  • English
Logo for Matematikksenteret Logo for matematikksenteret

Main navigation

  • Aktiviteter
  • Faglitteratur
  • Forskning
  • Utviklingssamarbeid
  • Konferanser og nettverk
  • Konkurranser
  • Ressurser for skole og barnehage
  • Yrkesfag
  • Nasjonal satsing - Meningsfull matematikk

Mobile menu

  • Aktiviteter
  • Faglitteratur
  • Forskning
  • Utviklingssamarbeid
  • Konferanser og nettverk
  • Konkurranser
  • Ressurser for skole og barnehage
  • Yrkesfag
  • Nasjonal satsing - Meningsfull matematikk
  • Aktuelt
  • Om senteret
  • Nettbutikk
  • English
Icon/CalculatorArrow-circleIcon/PuzzleIcon/CaretIcon/CaretIcon/CheckedIcon/ClockIcon/DownloadIcon/ExternalIcon/FacebookIcon/FilmIcon/GalleryIcon/GrunnskoleIcon/HamburgerIcon/ImageIcon/ListIcon/XLyspære_transparentIcon/MailIcon/MinusIcon/PDFIcon/PersonPerson_transparentPersoner_transparentIcon/PlusIcon/PrinterPuslespill_transparentSnakkebobler_transparentSpørsmålstegn_transparentIcon/Tag-pinTriangleIcon/TwitterIcon/DiplomIcon/WordIcon/ansatteIcon/arbeidspakkerIcon/besoksadressecheckbox-checkedcheckbox-uncheckedIcon/close-whiteelektro_transparentIcon/errorevighet_transparentfraktaler_transparentgraf_transparentgresk_transparentgrid-whiteGeogebra - Grunnskole v3handlekurvhjerne_transparentIcon/hvemsvarerGeoGebra - KikoraIcon/Light bulbIcon/TrophyIcon/Glasseslinjal_gradskive_transparentlinjer_transparentlist-whiteIcon/Bookpasser_transparentIcon/phoneIcon/postadresseGroup 2GroupIcon/DirectionIcon/ressurspersonerIconsirkel_transparentTemateselering_transparenttetraeder_transparenttrekant_transparentvinkel_transparentvolum_transparent

Navigasjonssti

Du er her: Hjem Publikasjoner

Publikasjoner

33 treff

Filtrer og søk i publikasjoner

Forskningsomrade
  • Argumentasjon
  • Dybdelæring
  • GeoGebra
  • Kommunikasjon og matematiske samtaler
  • Kompetanseutvikling i matematikk
  • Matematikk i barnehagen
  • Matematikkvansker
  • Organisasjonsutvikling
  • Problemløsing
  • Regnestrategier
  • Representasjoner
  • Tallforståelse
  • Tilpassa opplæring
  • Utforskende og ambisiøs matematikkundervisning
Type
  • Artikkel
  • Notat
  • (-) Miniartikkel
  • (-) Bok-kapittel
Nullstill søk
Minimer

Problemløsing med omkrets og areal

Anne-Gunn Svorkmo
Problemløsing
2012
Flere kenguruoppgaver handler om areal og omkrets. Noen av oppgavene har en problemstilling det kan være verdt å se litt nærmere på. Jeg har valgt ut oppgaver som kan egne seg til å arbeide med som problemløsingsoppgaver i små grupper.

Kenguruoppgaver - når sifrene bytter plass

Anne-Gunn Svorkmo
Dybdelæring, Problemløsing
2012
Flere kenguruoppgaver handler om sifrenes plassering i et flersifret tall. Jeg viser noen eksempler og skisserer noen idéer hvordan denne type oppgaver kan videreutvikles.

Hvordan stille gode spørsmål i arbeid med LIST- oppgaver?

Ingunn Valbekmo
Argumentasjon, Dybdelæring, Kommunikasjon og matematiske samtaler
2021
Når elever arbeider med LIST ressurser, er lærerens oppgave å veilede dem i utforsking av matematikk. Elever kan utforske den samme oppgaven på ganske ulike vis, med ulike strategier og ved hjelp av ulike representasjoner. Det kan derfor være en utfordring å stille de riktige spørsmålene – på riktig tidspunkt.

Utforsking med kenguruoppgaver

Anne-Gunn Svorkmo
Utforskende og ambisiøs matematikkundervisning
2021
Mange av oppgavene fra Kengurukonkurransen er problemløsningsoppgaver som egner seg til å bruke i den ordinære matematikkundervisningen. Oppgavene dekker fagemnene tall og algebra, geometri og logikk.

Ligningssett i kontekst

Anne-Gunn Svorkmo
Problemløsing, Regnestrategier
2021
Oppgaver med skålvekter eller kjøkkenvekter, er likhetstrekket mellom de oppgavene jeg her vil se nærmere på. Jeg ønsker å trekke fram noen problemløsningsstrategier jeg mener er spesielle for denne type oppgaver.

Å arbeide med "Hopp videre med kenguru" i klasserommet

Stig Atle Myhre
Dybdelæring, Regnestrategier, Tallforståelse
2022
Denne teksten tar utgangspunkt i en oppgave fra kengurukonkurransen. Det er endret på noen forutsetninger i oppgaven slik at det gir muligheter for dybdelæring. Teksten beskriver arbeid med denne oppgaven i ei økt med en 7.klasse.



Hvorfor er dette riktig, og hvorfor er dette feil?

Stian Tømmerdal
Argumentasjon, Dybdelæring, Kommunikasjon og matematiske samtaler
2022
Kjerneelementene skal være bærende elementer i matematikkundervisningen, og fremhever viktige aspekter i undervisningen. Ett av kjerneelementene er resonnering og argumentasjon, som er en tilnærming mot det å utvikle matematiske bevis.

Denne teksten omhandler resonnering og argumentasjon på småtrinnet med oppgaver fra Kengurukonkurransen.

Grenseobjekt for god sammenheng i matematikkfaget

Camilla Normann Justnes, Ingunn Valbekmo, Svein H. Torkildsen
Kompetanseutvikling i matematikk, Organisasjonsutvikling, Representasjoner
2022
Studier av overgangssituasjoner viser at alle overganger byr på muligheter som ansatte i barnehager og skoler kan gripe fatt i. I overgangen oppstår ofte et brudd i kontinuitet. Dersom ansatte i barnehagen og lærere i skolen sammen kan skape kontinuitet for barn og unge, vil det være med på å trygge overgangssituasjonene.

Når barnehager og skoler samarbeider om å skape sammenheng i…

Matematisk observasjon

Lene Grøterud Leer, Susanne Stengrundet
GeoGebra, Representasjoner
2022
Observasjon er viktig i matematikkfaget, i andre fag og i dagliglivet. Erfaringer fra klasserommet har vist at elever strever med å observere i matematikk. De er usikre på hva som er relevant i en gitt situasjon og hva de skal se etter.

I denne artikkelen skal vi derfor se nærmere på observasjon og hvordan elever kan bli bedre til å observere.

Planlegging av intensiv opplæring: En smakebit fra aktivitet om tid

Olaug E. Lona Svingen
Tilpassa opplæring, Matematikkvansker, Representasjoner
2022
Skolene er pålagt å gi elevene på 1. - 4. trinn intensiv opplæring når de står i fare for å bli hengende etter. Men hvordan planlegge innhold i intensiv opplæring? Forskning og erfaringer fra praksisfeltet viser at "fasemodellen" er et godt verktøy for å planlegge innhold i den intensive opplæringen.

Sider

  • Forrige side ‹‹
  • Side 1
  • Side 2
  • Nåværende side 3
  • Side 4
  • Neste side ››

Logo for NTNU

Postadresse

Matematikksenteret, NTNU
7491 Trondheim

Besøksadresse

Lysholmbygget,
E.C. Dahlsgt. 2, 2. etg.

E-post

kontakt@matematikksenteret.no

Kjernetid

09:00 - 15:00

Hold deg oppdatert!

Få nyheter og info om aktiviteter og læringsressurser gjennom vårt nyhetsbrev.
Meld deg på her

Personvernerklæring

Tilgjengelighetserklæring