Argumentasjon, Dybdelæring, Kommunikasjon og matematiske samtaler
Kjerneelementene skal være bærende elementer i matematikkundervisningen, og fremhever viktige aspekter i undervisningen. Ett av kjerneelementene er resonnering og argumentasjon, som er en tilnærming mot det å utvikle matematiske bevis.
Denne teksten omhandler resonnering og argumentasjon på småtrinnet med oppgaver fra Kengurukonkurransen.
Mønster brukes i mange sammenhenger og på flere fagområder. I LK20, læreplan for matematikk, knyttes mønster til kjerneelementet Utforsking og problemløsing. Utforsking defineres som å lete etter mønster, finne sammenhenger og diskutere seg fram til en felles forståelse.
Denne teksten tar utgangspunkt i en oppgave fra kengurukonkurransen. Det er endret på noen forutsetninger i oppgaven slik at det gir muligheter for dybdelæring. Teksten beskriver arbeid med denne oppgaven i ei økt med en 7.klasse.
Oppgaver med skålvekter eller kjøkkenvekter, er likhetstrekket mellom de oppgavene jeg her vil se nærmere på. Jeg ønsker å trekke fram noen problemløsningsstrategier jeg mener er spesielle for denne type oppgaver.
Det finnes likehetstrekk mellom noen av oppgavene i Kengurukonkurransen. I enkelte oppgaver brukes terninger på en eller annen måte, andre har tallkort eller pusselbrikker som etfelles element. Oppgaver med skålvekter eller kjøkkenvekter, er likhetstrekket mellom de oppgavene jeg her vil se nærmere på.
Argumentasjon, Dybdelæring, Kommunikasjon og matematiske samtaler
Når elever arbeider med LIST ressurser, er lærerens oppgave å veilede dem i utforsking av matematikk. Elever kan utforske den samme oppgaven på ganske ulike vis, med ulike strategier og ved hjelp av ulike representasjoner. Det kan derfor være en utfordring å stille de riktige spørsmålene – på riktig tidspunkt.
En tallinje er en romlig (som oftest lineær) representasjon av tall, som støtter matematisk forståelse, og den kan tydeliggjøre sammenhenger mellom måling, tall og statistikk. Hva sier forskninga om bruk av tallinja?
Mange elever tror at likhetstegnet betyr "her kommer svaret". Å lese likhetstegn som "blir" eller "er" kan føre til et operasjonelt syn på ekvivalens og likhetstegnet, og bygge opp under slike misoppfatninger. Hva sier forskninga?
Begreper om tid er komplekst og fundamentalt for læring både innenfor og utenfor matematikk, og bygger på språk, romforståelse og hukommelse. Hva sier forskninga om utvikling av begreper om tid?