Kunnskap om hvordan elever utvikler sine strategier, gir deg som lærer et redskap for å vurdere hvor elevene er i sin utvikling og hvordan eleven kan utvikle sine strategier videre.
Denne artikkelen er en omarbeiding av artikkelen «Barns strategier i arbeid med tall» (Svingen, 2016) og hovedfokuset her vil være på hvordan elever utvikler tallfaktakunnskap. Målet er at elever…
Utvikling av tallforståelse framheves i mange studier som svært viktig for elevenes læring av matematikk. Men det er ikke åpenbart hva tallforståelse innebærer.
I artikkelen presenteres det en kort beskrivelse av fem komponenter i matematisk kompetanse, og det drøftes ulike aspekter ved tallforståelse innen hver komponent. De ulike aspektene er utviklet gjennom en gjennomgang av…
Kommunikasjon og matematiske samtaler, Kompetanseutvikling i matematikk, Representasjoner, Utforskende og ambisiøs matematikkundervisning
Ambisiøs Matematikkundervisning bygger på fire prinsipper som må ses i sammenheng med hverandre: Matematikken skal være meningsfull – Alle elever skal ha likeverdig tilgang til å lære matematikk – Undervisningen skal ha tydelige læringsmål – Kunnskap om elevene som lærende.
Kommunikasjon og matematiske samtaler, Problemløsing, Representasjoner, Utforskende og ambisiøs matematikkundervisning
I denne artikkelen presenteres en problemløsingsoppgave som brukes til å gi elevene muligheter for resonnement og problemløsing, til å bruke og utvikle matematiske representasjoner, bli oppmuntret til meningsfulle matematiske samtaler, oppleve at det å streve lenge med en oppgave og gjøre feil underveis kan bidra til ny innsikt og læring, og at samarbeid med andre elever gir stor gevinst, både…
Argumentasjon, Dybdelæring, Kommunikasjon og matematiske samtaler, Utforskende og ambisiøs matematikkundervisning
Australske universiteter har siden 1970-tallet brukt det de kaller «whiteboarding» (Forrester, Sandison & Denny, 2017). Det innebærer å bruke whiteboardtavler som et verktøy i matematikkundervisningen for å fremme høyere ordens tenking og resonnering i tillegg til samarbeidslæring. Elevene skal stå foran tavlene (som må kunne pusses av) i små grupper og løse matematikkproblemer. …
Kommunikasjon og matematiske samtaler, Kompetanseutvikling i matematikk, Utforskende og ambisiøs matematikkundervisning
Matematiske samtaler og diskusjoner har stor betydning for elevenes utvikling av dybdelæring og forståelse i matematikk. Å legge til rette for produktive matematiske diskusjoner samtidig som en leder elevene mot målet for timen er kjernen i god matematikkundervisning, og det er kanskje det mest utfordrende aspektet ved lærerens undervisning.
Tilpassa opplæring, Kommunikasjon og matematiske samtaler, Matematikkvansker, Representasjoner
Alle elever har behov for og kan utvikle en dypere matematisk forståelse, men noen trenger litt bedre tid og mer målrettet innsats for å trenge inn i matematikken. De trenger å bli utfordret og engasjert slik at matematikk skaper mening og blir relevant. Intensiv opplæring kan gi elevene denne muligheten og være avgjørende for at de kan glede seg over egne oppdagelser og styrke den indre…
Kommunikasjon og matematiske samtaler, Matematikk i barnehagen
Barnehagen skal stimulere barns nysgjerrighet, glede og interesse for realfag. Da må barna delta i realfaglige samtaler hvor de får tid og mulighet til å stille spørsmål, reflektere, lage egne forklaringer og lytte til andre.
Denne artikkelen beskriver hvordan personalet kan bruke realfaglige samtaler for å støtte barns egen tenkning og læring i realfag. Denne artikkelen beskriver…
Denne artikkelen bygger på artikkelen «Begrepslæring og begrepsforståelse i matematikk». Der ser vi på ulike typer begrep og begrepsstrukturer. Her vil vi se på begrepene brøk og desimaltall. Artikkelen forteller noe om vanskeligheter elever kan møte når de arbeider med brøk og desimaltall.
Tegn og symboler har stor betydning når man skal arbeide med og forstå matematikk. En representasjon er ikke identisk med det matematiske objektet.
Denne teksten har fokus på arbeid med ulike representasjoner, slik at elevene ser det matematiske objektet på ulike måter, og dermed utvikler god forståelse av hva det matematiske objektet er.