Dybdelæring, Problemløsing, Utforskende og ambisiøs matematikkundervisning
Alle elever trenger å bli utfordret kognitivt i matematikkundervisningen, også elever som presterer lavt i matematikk. Oppgaver som stiller store kognitive krav, fremmer og utfordrer blant annet elevenes resonnement- og problemløsningskompetanse, og krever at elevene må bruke relevant forkunnskap og ulike representasjoner, og oppgavetypen fokuserer på å utvikle forståelse for matematiske begreper…
Når du som lærer velger oppgaver og problemstillinger som du ønsker at elevene skal arbeide med, på hvilket grunnlag tar du valget ditt? Hva ser du etter? Har du tenkt gjennom hva det kan være lurt å legge merke til?
Jeg vil vise eksempler på hva det er med enkelte oppgaver som gjør at de for meg peker seg ut som interessante.
Skolene er pålagt å gi elevene på 1. - 4. trinn intensiv opplæring når de står i fare for å bli hengende etter. Men hvordan planlegge innhold i intensiv opplæring? Forskning og erfaringer fra praksisfeltet viser at "fasemodellen" er et godt verktøy for å planlegge innhold i den intensive opplæringen.
Argumentasjon, Dybdelæring, Kommunikasjon og matematiske samtaler
Kjerneelementene skal være bærende elementer i matematikkundervisningen, og fremhever viktige aspekter i undervisningen. Ett av kjerneelementene er resonnering og argumentasjon, som er en tilnærming mot det å utvikle matematiske bevis.
Denne teksten omhandler resonnering og argumentasjon på småtrinnet med oppgaver fra Kengurukonkurransen.
Observasjon er viktig i matematikkfaget, i andre fag og i dagliglivet. Erfaringer fra klasserommet har vist at elever strever med å observere i matematikk. De er usikre på hva som er relevant i en gitt situasjon og hva de skal se etter.
I denne artikkelen skal vi derfor se nærmere på observasjon og hvordan elever kan bli bedre til å observere.
Mønster brukes i mange sammenhenger og på flere fagområder. I LK20, læreplan for matematikk, knyttes mønster til kjerneelementet Utforsking og problemløsing. Utforsking defineres som å lete etter mønster, finne sammenhenger og diskutere seg fram til en felles forståelse.
Camilla Normann Justnes, Ingunn Valbekmo, Svein H. Torkildsen
Kompetanseutvikling i matematikk, Organisasjonsutvikling, Representasjoner
Studier av overgangssituasjoner viser at alle overganger byr på muligheter som ansatte i barnehager og skoler kan gripe fatt i. I overgangen oppstår ofte et brudd i kontinuitet. Dersom ansatte i barnehagen og lærere i skolen sammen kan skape kontinuitet for barn og unge, vil det være med på å trygge overgangssituasjonene.
Når barnehager og skoler samarbeider om å skape sammenheng i…
Denne teksten tar utgangspunkt i en oppgave fra kengurukonkurransen. Det er endret på noen forutsetninger i oppgaven slik at det gir muligheter for dybdelæring. Teksten beskriver arbeid med denne oppgaven i ei økt med en 7.klasse.
Det finnes likehetstrekk mellom noen av oppgavene i Kengurukonkurransen. I enkelte oppgaver brukes terninger på en eller annen måte, andre har tallkort eller pusselbrikker som etfelles element. Oppgaver med skålvekter eller kjøkkenvekter, er likhetstrekket mellom de oppgavene jeg her vil se nærmere på.