Posisjonssystemet vårt gjør det mulig å skrive uendelig mange tall ved hjelp av bare ti siffer. Systemet er utviklet og effektivisert gjennom mange hundreår, som gjør at elever trenger tid for å utvikle en god forståelse for posisjonssystemet. Forståelsen for posisjonssystemet settes på en ekstra prøve når elevene møter desimaltall, og det er her vi finner de fleste misoppfatningene knyttet til…
Misoppfatninger i matematikk, Matematiske tema, Tallforståelse
Denne teksten fokuserer på misoppfatninger innen området Tallregning. Vi vil vise eksempler på diagnostiske oppgaver, gi korte analyser av oppgavene, og eksempel på elevsvar som kan tyde på at elever er i misoppfatninger.
Oppgavene kartlegger misoppfatninger knyttet til forståelsen av brøkbegrepet, og er utviklet og prøvd ut av Matematikksenteret.
Misoppfatninger i matematikk, Representasjoner, Tallforståelse
Denne artikkelen bygger på artikkelen Å utvikle elevers begrepsforståelse (Kerstin Pettersson og Gerd Brandell, 2017). Der finner man eksempel på terskelbegrepene funksjon og derivert. Denne artikkelen inneholder et par andre eksempler på terskelbegrep, brøk og sannsynlighet. Den har eksempler på hva som kan gå galt i overgangsfasen og gir noen tips til hva man kan gjøre for å hjelpe elevene over…
Argumentasjon, Kommunikasjon og matematiske samtaler, Matematikk i barnehagen
Barn er nysgjerrig og vil gjerne utforske hvordan ting henger sammen for å forstå verden. Det å se sammenhenger er viktig for forståelse og innsikt. Naturfag fokuserer spesielt på sammenhenger i naturen, og matematikk forteller oss hvordan vi kan undersøke sammenhenger.
Denne teksten belyser hvorfor vi sorterer, og tar for seg aspektene klassifisering og ordning innenfor sortering.
Kommunikasjon og matematiske samtaler, Regnestrategier, Representasjoner, Tallforståelse
Utvikling av tallforståelse framheves i mange studier som svært viktig for elevers matematikklæring, men det er ikke åpenbart hva tallforståelse innebærer.
Dette er siste del i en serie på fire artikler i Tangenten der ulike aspekter ved tallforståelse på mellomtrinnet knyttet til hver av de fem komponentene av matematisk kompetanse blir presentert og drøftet. Artiklene viser…
Oppgaveløsingen har tradisjonelt en sentral rolle i matematikkundervisningen, og en sentral del av matematikklærerens arbeid er valg eller utforming av oppgaver elevene skal arbeide med. Oppgavene elevene får arbeide med har stor betydning for hva de lærer og hvor motivert de blir for faget.
Stein og Smith (1998) skiller mellom matematikkoppgaver som stiller lave kognitive krav og…
Kommunikasjon og matematiske samtaler, Regnestrategier, Representasjoner, Tallforståelse
Utvikling av tallforståelse framheves i mange studier som svært viktig for elevers matematikklæring, men det er ikke åpenbart hva tallforståelse innebærer.
Dette er del 3 i en serie på fire artikler i Tangenten der ulike aspekter ved tallforståelse på mellomtrinnet knyttet til hver av de fem komponentene av matematisk kompetanse blir presentert og drøftet. Artiklene viser hvordan…
Kommunikasjon og matematiske samtaler, Regnestrategier, Representasjoner, Tallforståelse
Utvikling av tallforståelse framheves i mange studier som svært viktig for elevers matematikklæring, men det er ikke åpenbart hva tallforståelse innebærer.
Dette er del 2 i en serie på fire artikler i Tangenten der ulike aspekter ved tallforståelse på mellomtrinnet knyttet til hver av de fem komponentene av matematisk kompetanse blir presentert og drøftet. Artiklene viser hvordan…
En oppgavestreng er en sekvens med 4-6 relaterte regnestykker som er designet for å engasjere elever i en diskusjon om en gitt strategi i arbeid med en regneoperasjon. Aktiviteten kan også brukes i diskusjon om en egenskap ved regneoperasjonen uten at den egenskapen nødvendigvis brukes som en strategi i beregningen av de aktuelle regnestykkene.
Kommunikasjon og matematiske samtaler, Regnestrategier, Tallforståelse
Telle i kor er en aktivitet hvor klassen teller sammen ved å legge til eller trekke fra et bestemt tall, mens læreren skriver det elevene teller i en bestemt konfigurasjon av rader og kolonner på tavlen. Læreren stopper tellingen ved strategiske punkter, slik at elevene blir utfordret på å beskrive og begrunne mønster som kommer fram i tellingen og bruke mønstrene når de fortsetter å telle.