Camilla Normann Justnes, Anne Hjønnevåg Nakken, Beate Nergård
Matematikk i barnehagen, Utforskende og ambisiøs matematikkundervisning
I barnehagen kan personalet finne på, initiere og drive mange ulike aktiviteter med og for barna. Mange aktiviteter kan bidra til opplevelsen av å være en del av fellesskapet og styrke barnas opplevelse av inkludering. At barna selv medvirker til det som skjer i barnehagen, og hvordan personlet legger til rette for likeverdig deltagelse, spiller inn.
GeoGebra, Utforskende og ambisiøs matematikkundervisning
GeoGebra gir elevene mulighet til å utforske geometriske sammenhenger på måter som ikke er mulig med papir og blyant. Programmet inneholder mange nyttige verktøy, og i denne artikkelen presenterer jeg ett av de mer ukjente, nemlig Penn. Jeg viser også hvordan Penn kan støtte elevene når de utforsker geometriske sammenhenger i GeoGebra.
Når du som lærer velger oppgaver og problemstillinger som du ønsker at elevene skal arbeide med, på hvilket grunnlag tar du valget ditt? Hva ser du etter? Har du tenkt gjennom hva det kan være lurt å legge merke til?
Jeg vil vise eksempler på hva det er med enkelte oppgaver som gjør at de for meg peker seg ut som interessante.
Argumentasjon, Dybdelæring, Kommunikasjon og matematiske samtaler
Kjerneelementene skal være bærende elementer i matematikkundervisningen, og fremhever viktige aspekter i undervisningen. Ett av kjerneelementene er resonnering og argumentasjon, som er en tilnærming mot det å utvikle matematiske bevis.
Denne teksten omhandler resonnering og argumentasjon på småtrinnet med oppgaver fra Kengurukonkurransen.
Denne teksten tar utgangspunkt i en oppgave fra kengurukonkurransen. Det er endret på noen forutsetninger i oppgaven slik at det gir muligheter for dybdelæring. Teksten beskriver arbeid med denne oppgaven i ei økt med en 7.klasse.
Representasjoner, Tallforståelse, Utforskende og ambisiøs matematikkundervisning
Kenguruoppgavene er flervalgsoppgaver med fem svaralternativer. Noen av svaralternativene er valgt ut fra feilsvar vi kan forvente, mens andre er mer eller mindre tilfeldig valgt.
Oppgavene er ikke pilotert, noe som ofte gjøres for å finne feilsvar ut fra gitte kriterier. Likevel er det fullt mulig å utnytte ressursen som ligger i flervalgsoppgaver til å berike og utvide den…
Argumentasjon, Dybdelæring, Kommunikasjon og matematiske samtaler
Når elever arbeider med LIST ressurser, er lærerens oppgave å veilede dem i utforsking av matematikk. Elever kan utforske den samme oppgaven på ganske ulike vis, med ulike strategier og ved hjelp av ulike representasjoner. Det kan derfor være en utfordring å stille de riktige spørsmålene – på riktig tidspunkt.
Mange av oppgavene fra Kengurukonkurransen er problemløsningsoppgaver som egner seg til å bruke i den ordinære matematikkundervisningen. Oppgavene dekker fagemnene tall og algebra, geometri og logikk.
I Cadet 2016 var en av oppgavene å finne summen av lengder i en figur bestående av et kvadrat, to trekanter og en firkant. Hvilke matematiske muligheter kan en slik oppgave gi, og hvordan kan en arbeide med oppgaven på en slik måte at elevene utfordres på viktige matematiske ideer?
For at kenguruoppgaver i størst mulig grad skal være tilpasset til elever på ulike nivå, finnes det forskjellige oppgavesett. Likevel kan mange av oppgavene i alle de tre oppgavesettene brukes på kryss og tvers uavhengig av nivå og trinn. Når oppgaveideen er god eller problemstillingen interessant, er det ofte bare små justeringer som skal til for at oppgaven kan brukes på høyere eller lavere…