I denne artikkelen vil vi gi et eksempel på hvordan GeoGebra kan brukes når elevene skal lære om rotasjon. Vi vil vise hvordan elevene kan få varierte erfaringer ved å bruke programmet, og hvordan arbeidet kan foregå i tråd med kjerneelementene i forslaget til ny læreplan (LK20).
Matematiske begrep, ideer og strategier blir uttrykt ved hjelp av ulike representasjoner. Det er fordi de er abstrakte og må derfor representeres på et eller annet vis for at man skal kunne arbeide med dem. Representasjoner kan være tallsymbol, tallinjer, geometriske figurer, tabeller, diagrammer, grafer, tegninger og beskrivelser med naturlig språk. Å forstå og bruke ulike representasjoner er en…
Helt siden det ble obligatorisk med digitale verktøy til eksamen, har GeoGebra hatt en sterk plass i den norske skolen. Programmet har likevel ikke fått den plassen det fortjener. Det kan brukes til mer enn å tegne og tolke grafer.
Denne artikkelen skal vise hvordan man kan bruke programmet til å oppnå dybdelæring gjennom utforskning og resonnering.
Maria V. Bøe, Camilla Normann Justnes, Susanne Stengrundet
Argumentasjon, Dybdelæring
Denne artikkelen handler om begrepet «horisontkunnskap». Lærere med horisontkunnskap er oppmerksomme på kjernen i faget samtidig som de har øyne for den realfaglige horisonten. Horisontkunnskap er viktig for å skape god læring og undervisning i realfagene.
Teksten blir illustrert med eksempler fra matematikk og naturfag.
Ekte problemer krever den ekstra logiske prosessen med kreativitet, innsikt, overblikk og AHA! Artikkelen belyser flere typer spørsmål: Hva er problemløsing? Hvordan skiller problemløsing seg fra arbeid med «vanlige matematikkoppgaver»? Hva kjennetegner en god problemløser?
Matematikk i barnehagen, Problemløsing, Regnestrategier
I en problemløsingssituasjon er vi i ukjent terreng, der det ikke er åpenbart for oss hvordan vi kan løse et problem. Dette gjelder også barn. Allerede fra veldig ung alder engasjerer barn seg i utfordringer og problemer i ukjent terreng basert på et ønske om å oppnå noe.
Det er av stor betydning for senere effektivitet og fleksibilitet i møte med problemer at barn tidlig får…
Problemløsing, Utforskende og ambisiøs matematikkundervisning
Gjennom utforskende (inquiry basert) undervisning skal elevene utforske og undersøke en matematisk problemstilling. De skal planlegge løsningsmetoder, forklare og begrunne løsningene, og oppmuntres til å stille nye spørsmål som de skal prøve å finne svar på.
Utforskende undervisning skiller seg fra undervisning basert på et oppgaveparadigme, der elevene lærer hvordan de skal løse…
Allerede fra veldig ung alder engasjerer barn seg i utfordringer og problemer basert på et ønske om å oppnå noe. De lærer kanskje å krabbe for å nå fram til noe de har lyst på? Barn løser problemer helt naturlig med problemløsingsstrategier som å herme etter andre, prøve ut ting, gjøre mange feil og justerer strategiene sine deretter.
Kommunikasjon og matematiske samtaler, Problemløsing, Utforskende og ambisiøs matematikkundervisning
Matematikksenteret har skrevet to artikler om problemløsing. Artikkelen "Å undervise matematisk problemløsing" av Svein H. Torkildsen er laget til MAM-programmet med eksempler knyttet til mellom- og ungdomstrinnet.
Denne artikkelen inneholder imidlertid noen flere problemløsingsstrategier og eksemplene er knyttet til både ungdomstrinn og videregående skole.
Argumentasjon, Kommunikasjon og matematiske samtaler, Matematikk i barnehagen
Barn er nysgjerrig og vil gjerne utforske hvordan ting henger sammen for å forstå verden. Det å se sammenhenger er viktig for forståelse og innsikt. Naturfag fokuserer spesielt på sammenhenger i naturen, og matematikk forteller oss hvordan vi kan undersøke sammenhenger.
Denne teksten belyser hvorfor vi sorterer, og tar for seg aspektene klassifisering og ordning innenfor sortering.