Mønster brukes i mange sammenhenger og på flere fagområder. I LK20, læreplan for matematikk, knyttes mønster til kjerneelementet Utforsking og problemløsing. Utforsking defineres som å lete etter mønster, finne sammenhenger og diskutere seg fram til en felles forståelse.
Argumentasjon, Dybdelæring, Kommunikasjon og matematiske samtaler, Utforskende og ambisiøs matematikkundervisning
Australske universiteter har siden 1970-tallet brukt det de kaller «whiteboarding» (Forrester, Sandison & Denny, 2017). Det innebærer å bruke whiteboardtavler som et verktøy i matematikkundervisningen for å fremme høyere ordens tenking og resonnering i tillegg til samarbeidslæring. Elevene skal stå foran tavlene (som må kunne pusses av) i små grupper og løse matematikkproblemer. …
I denne artikkelen vil vi gi et eksempel på hvordan GeoGebra kan brukes når elevene skal lære om rotasjon. Vi vil vise hvordan elevene kan få varierte erfaringer ved å bruke programmet, og hvordan arbeidet kan foregå i tråd med kjerneelementene i forslaget til ny læreplan (LK20).
Regneark har lenge vært brukt i skolen, oftest til økonomiske beregninger. Men regneark er også et godt hjelpemiddel til å modellere andre situasjoner. Når elevene lager egne regneark er utforsking, problemløsing og generalisering sentralt. Oversiktlige diagrammer er ofte bare et tastetrykk unna og sammen med muligheten for fargede celler, rader og kolonner kan regneark gi god støtte i…
Matematiske begrep, ideer og strategier blir uttrykt ved hjelp av ulike representasjoner. Det er fordi de er abstrakte og må derfor representeres på et eller annet vis for at man skal kunne arbeide med dem. Representasjoner kan være tallsymbol, tallinjer, geometriske figurer, tabeller, diagrammer, grafer, tegninger og beskrivelser med naturlig språk. Å forstå og bruke ulike representasjoner er en…
Helt siden det ble obligatorisk med digitale verktøy til eksamen, har GeoGebra hatt en sterk plass i den norske skolen. Programmet har likevel ikke fått den plassen det fortjener. Det kan brukes til mer enn å tegne og tolke grafer.
Denne artikkelen skal vise hvordan man kan bruke programmet til å oppnå dybdelæring gjennom utforskning og resonnering.
Denne artikkelen ser nærmere på teknologiens rolle i realfagene. Først ser vi nærmere på begrepet teknologi og forholdet mellom matematikk, naturfag og teknologi. Dette handler kort sagt om en gjensidig avhengighet, der matematikk og naturfag er viktige for teknologien mens teknologi er viktig i de to fagområdene. Artikkelen ser også på teknologisk kompetanse og teknologiens rolle i utdanning.
Maria V. Bøe, Camilla Normann Justnes, Susanne Stengrundet
Argumentasjon, Dybdelæring
Denne artikkelen handler om begrepet «horisontkunnskap». Lærere med horisontkunnskap er oppmerksomme på kjernen i faget samtidig som de har øyne for den realfaglige horisonten. Horisontkunnskap er viktig for å skape god læring og undervisning i realfagene.
Teksten blir illustrert med eksempler fra matematikk og naturfag.
Matematikk i barnehagen, Programmering og algoritmisk tenking
Barn vokser opp i teknologirike omgivelser. De har digitale verktøy som digitalkamera, datamaskin, mobiltelefon, skanner, nettbrett og lignende nært i sin hverdag. I rammeplanens kapittel om digital praksis blir det løftet frem at digitale verktøy er en naturlig del av et rikt og allsidig læringsmiljø i barnehagen. Det er mange måter å jobbe med digitale verktøy på.
Argumentasjon, Kommunikasjon og matematiske samtaler, Matematikk i barnehagen
Barn er nysgjerrig og vil gjerne utforske hvordan ting henger sammen for å forstå verden. Det å se sammenhenger er viktig for forståelse og innsikt. Naturfag fokuserer spesielt på sammenhenger i naturen, og matematikk forteller oss hvordan vi kan undersøke sammenhenger.
Denne teksten belyser hvorfor vi sorterer, og tar for seg aspektene klassifisering og ordning innenfor sortering.