Helt siden det ble obligatorisk med digitale verktøy til eksamen, har GeoGebra hatt en sterk plass i den norske skolen. Programmet har likevel ikke fått den plassen det fortjener. Det kan brukes til mer enn å tegne og tolke grafer.
Denne artikkelen skal vise hvordan man kan bruke programmet til å oppnå dybdelæring gjennom utforskning og resonnering.
Maria V. Bøe, Camilla Normann Justnes, Susanne Stengrundet
Argumentasjon, Dybdelæring
Denne artikkelen handler om begrepet «horisontkunnskap». Lærere med horisontkunnskap er oppmerksomme på kjernen i faget samtidig som de har øyne for den realfaglige horisonten. Horisontkunnskap er viktig for å skape god læring og undervisning i realfagene.
Teksten blir illustrert med eksempler fra matematikk og naturfag.
Argumentasjon, Kommunikasjon og matematiske samtaler, Matematikk i barnehagen
Barn er nysgjerrig og vil gjerne utforske hvordan ting henger sammen for å forstå verden. Det å se sammenhenger er viktig for forståelse og innsikt. Naturfag fokuserer spesielt på sammenhenger i naturen, og matematikk forteller oss hvordan vi kan undersøke sammenhenger.
Denne teksten belyser hvorfor vi sorterer, og tar for seg aspektene klassifisering og ordning innenfor sortering.
Oppgaveløsingen har tradisjonelt en sentral rolle i matematikkundervisningen, og en sentral del av matematikklærerens arbeid er valg eller utforming av oppgaver elevene skal arbeide med. Oppgavene elevene får arbeide med har stor betydning for hva de lærer og hvor motivert de blir for faget.
Stein og Smith (1998) skiller mellom matematikkoppgaver som stiller lave kognitive krav og…
En oppgavestreng er en sekvens med 4-6 relaterte regnestykker som er designet for å engasjere elever i en diskusjon om en gitt strategi i arbeid med en regneoperasjon. Aktiviteten kan også brukes i diskusjon om en egenskap ved regneoperasjonen uten at den egenskapen nødvendigvis brukes som en strategi i beregningen av de aktuelle regnestykkene.
Elevene i en sjetteklasse hadde deltatt i Kengurukonkurransen. I etterkant fikk de tilbake hver sin besvarelse som var rettet og registrert, uten at læreren hadde markert hva som var riktig eller galt på arket. Elevene hadde ingen hjelp fra rettinga til å se hvilke svar som var riktige.
Denne teksten tar for seg noen oppgaver, og hvilken tilnærming noen av elevene hadde til dem.
Etter sommerferien når elevene begynner på et nytt klassetrinn eller en ny skole, er ofte de første matematikktimene satt av til repetisjon. Når påsken nærmer seg, stresser lærerne for å bli ferdige med «pensum» for å ha nok tid til repetisjon.
Denne teksten ser på måter å repetere på som gir elevene langt større utbytte enn en ny gjennomgang som ikke hjelper til forståelsen.
Argumentasjon, Kommunikasjon og matematiske samtaler, Regnestrategier
Matematiske diskusjoner og kommunikasjon fremheves som avgjørende for elevers forståelse og læring i matematikk.
Denne artikkelen fokuserer på hvordan lærere kan bruke matematiske samtaler til å fremme elevers tenkning og læring i matematikk. Den beskriver redskaper som kan brukes for å implementere diskusjoner i matematikk og for i større grad å involvere elevers tenkning i…
Tilpassa opplæring, Dybdelæring, Utforskende og ambisiøs matematikkundervisning
Målet med denne artikkelen er å sette fokus på forskning om god læring og undervisning i matematikk ved å gi en sammenfattet og lett tilgjengelig - men samtidig faglig robust - oversikt over sentrale ideer innen dette forskningsfeltet.
Vi vil referere til både norsk og internasjonal litteratur, men vil hele tiden å beholde den norske konteksten som bakgrunn for det som blir…
Gjennom flere år har jeg i egen klasse benyttet oppgaver fra Kengurukonkurransen som et utgangspunkt for samarbeid og felles oppgaveløsing i hel klasse eller gruppe. Dette er flervalgsoppgaver med varierende vanskegrad og med ulike matematiske tema. Når en skal forsøke å legge til rette for at hver enkelt elev skal møte utfordringer på sitt nivå, er det lett å tenke at en skal jobbe med ulike…