Posisjonssystemet vårt gjør det mulig å skrive uendelig mange tall ved hjelp av bare ti siffer. Systemet er utviklet og effektivisert gjennom mange hundreår, som gjør at elever trenger tid for å utvikle en god forståelse for posisjonssystemet. Forståelsen for posisjonssystemet settes på en ekstra prøve når elevene møter desimaltall, og det er her vi finner de fleste misoppfatningene knyttet til…
Misoppfatninger i matematikk, Matematiske tema, Tallforståelse
Denne teksten fokuserer på misoppfatninger innen området Tallregning. Vi vil vise eksempler på diagnostiske oppgaver, gi korte analyser av oppgavene, og eksempel på elevsvar som kan tyde på at elever er i misoppfatninger.
Oppgavene kartlegger misoppfatninger knyttet til forståelsen av brøkbegrepet, og er utviklet og prøvd ut av Matematikksenteret.
Misoppfatninger i matematikk, Matematiske tema, Tallforståelse
Denne teksten fokuserer på misoppfatninger innen området Tallregning. Vi vil vise eksempler på diagnostiske oppgaver, gi korte analyser av oppgavene, og eksempel på elevsvar som kan tyde på at elever er i misoppfatninger. Artikkelen bygger videre på artikkelen "Misoppfatninger knyttet til tall".
Oppgavene er utviklet og prøvd ut av Matematikksenteret. Oppgavene tester om…
Currently there is no national quality assessment of published curriculum materials in Norway. This puts a large personal responsibility on the teacher to develop their lessons in order to reach the competence objectives in the national curriculum. However, many teachers still continue to lean too much on curriculum materials to achieve the competence objectives in appropriate ways. …
Hva er det spesielle en matematikklærer bør kunne, men som en matematiker ikke trenger å kunne og en lærer i et annet fag ikke trenger å kunne?
Teksten beskriver to ulike rammeverk, undervisningskunnskap i matematikk (UKM) og kunnskapskvartetten (KQ). De har hatt stor betydning både for hvordan vi ser på matematikklærerkompetanse og for forskning og utvikling knyttet til dette…
Pascals talltrekant er en av de mest berømte trekanter vi kjenner til. Denne trekanten er full av spennende mønstre. I dag lar matematikkinteresserte seg begeistre av mulighetene til å utforske de mange mønstrene i trekanten – til og med skjulte mønstre utenfor trekanten!
I grunnskolen er brøk et gjennomgående tema. Mange elever opplever at brøk er vanskelig å forstå, og de husker ikke hvordan de skal utføre regneoperasjonene. I større etterutdanningsforløp som matematikksenteret har ansvar for, blir brøk ofte ønsket som tema på kurs og i demonstrasjonsundervisning.