Dybdelæring, Problemløsing, Utforskende og ambisiøs matematikkundervisning
Alle elever trenger å bli utfordret kognitivt i matematikkundervisningen, også elever som presterer lavt i matematikk. Oppgaver som stiller store kognitive krav, fremmer og utfordrer blant annet elevenes resonnement- og problemløsningskompetanse, og krever at elevene må bruke relevant forkunnskap og ulike representasjoner, og oppgavetypen fokuserer på å utvikle forståelse for matematiske begreper…
Mønster brukes i mange sammenhenger og på flere fagområder. I LK20, læreplan for matematikk, knyttes mønster til kjerneelementet Utforsking og problemløsing. Utforsking defineres som å lete etter mønster, finne sammenhenger og diskutere seg fram til en felles forståelse.
Problemløsing, Utforskende og ambisiøs matematikkundervisning
Problemløsing har hatt en sentral plass i læreplaner for matematikk siden Mønsterplanen fra 1987. I LK20 løftes problemløsing fram gjennom kjerneelementet Utforsking og problemløsing. Elevene bør få eksplisitt opplæring i noen sentrale problemløsingsstrategier allerede fra de første skoleårene.
Kunnskap om hvordan elever utvikler sine strategier, gir deg som lærer et redskap for å vurdere hvor elevene er i sin utvikling og hvordan eleven kan utvikle sine strategier videre.
Denne artikkelen er en omarbeiding av artikkelen «Barns strategier i arbeid med tall» (Svingen, 2016) og hovedfokuset her vil være på hvordan elever utvikler tallfaktakunnskap. Målet er at elever…
Kommunikasjon og matematiske samtaler, Kompetanseutvikling i matematikk, Representasjoner, Utforskende og ambisiøs matematikkundervisning
Ambisiøs Matematikkundervisning bygger på fire prinsipper som må ses i sammenheng med hverandre: Matematikken skal være meningsfull – Alle elever skal ha likeverdig tilgang til å lære matematikk – Undervisningen skal ha tydelige læringsmål – Kunnskap om elevene som lærende.
Kommunikasjon og matematiske samtaler, Problemløsing, Representasjoner, Utforskende og ambisiøs matematikkundervisning
I denne artikkelen presenteres en problemløsingsoppgave som brukes til å gi elevene muligheter for resonnement og problemløsing, til å bruke og utvikle matematiske representasjoner, bli oppmuntret til meningsfulle matematiske samtaler, oppleve at det å streve lenge med en oppgave og gjøre feil underveis kan bidra til ny innsikt og læring, og at samarbeid med andre elever gir stor gevinst, både…
I denne artikkelen vil vi gi et eksempel på hvordan GeoGebra kan brukes når elevene skal lære om rotasjon. Vi vil vise hvordan elevene kan få varierte erfaringer ved å bruke programmet, og hvordan arbeidet kan foregå i tråd med kjerneelementene i forslaget til ny læreplan (LK20).
Tilpassa opplæring, Kommunikasjon og matematiske samtaler, Matematikkvansker, Representasjoner
Alle elever har behov for og kan utvikle en dypere matematisk forståelse, men noen trenger litt bedre tid og mer målrettet innsats for å trenge inn i matematikken. De trenger å bli utfordret og engasjert slik at matematikk skaper mening og blir relevant. Intensiv opplæring kan gi elevene denne muligheten og være avgjørende for at de kan glede seg over egne oppdagelser og styrke den indre…
Denne artikkelen bygger på artikkelen «Begrepslæring og begrepsforståelse i matematikk». Der ser vi på ulike typer begrep og begrepsstrukturer. Her vil vi se på begrepene brøk og desimaltall. Artikkelen forteller noe om vanskeligheter elever kan møte når de arbeider med brøk og desimaltall.