Regneark har lenge vært brukt i skolen, oftest til økonomiske beregninger. Men regneark er også et godt hjelpemiddel til å modellere andre situasjoner. Når elevene lager egne regneark er utforsking, problemløsing og generalisering sentralt. Oversiktlige diagrammer er ofte bare et tastetrykk unna og sammen med muligheten for fargede celler, rader og kolonner kan regneark gi god støtte i…
Matematiske begrep, ideer og strategier blir uttrykt ved hjelp av ulike representasjoner. Det er fordi de er abstrakte og må derfor representeres på et eller annet vis for at man skal kunne arbeide med dem. Representasjoner kan være tallsymbol, tallinjer, geometriske figurer, tabeller, diagrammer, grafer, tegninger og beskrivelser med naturlig språk. Å forstå og bruke ulike representasjoner er en…
Helt siden det ble obligatorisk med digitale verktøy til eksamen, har GeoGebra hatt en sterk plass i den norske skolen. Programmet har likevel ikke fått den plassen det fortjener. Det kan brukes til mer enn å tegne og tolke grafer.
Denne artikkelen skal vise hvordan man kan bruke programmet til å oppnå dybdelæring gjennom utforskning og resonnering.
Tegn og symboler har stor betydning når man skal arbeide med og forstå matematikk. En representasjon er ikke identisk med det matematiske objektet.
Denne teksten har fokus på arbeid med ulike representasjoner, slik at elevene ser det matematiske objektet på ulike måter, og dermed utvikler god forståelse av hva det matematiske objektet er.
Maria V. Bøe, Camilla Normann Justnes, Susanne Stengrundet
Argumentasjon, Dybdelæring
Denne artikkelen handler om begrepet «horisontkunnskap». Lærere med horisontkunnskap er oppmerksomme på kjernen i faget samtidig som de har øyne for den realfaglige horisonten. Horisontkunnskap er viktig for å skape god læring og undervisning i realfagene.
Teksten blir illustrert med eksempler fra matematikk og naturfag.
Nesten uansett hvor vi er og hva vi gjør i hverdagen vår møter vi mange matematiske tegninger og symboler. Dette kan være tall, tallinje, tallfigurer, geometriske figurer, tabeller, diagrammer, grafer og beskrivelser med naturlig språk. Disse forskjellige uttrykksformene i matematikk er representasjoner.
Dybdelæring er et sentralt begrep i overordnet del av Læreplanverket, og kan brukes i forbindelse med læring i ulike fag. Men hva betyr det egentlig i matematikkfaget?
I denne artikkelen trekker vi fram fem sentrale komponenter i den matematiske læringsprosessen som kan beskrive hva dybdelæring i matematikk kan være.
Misoppfatninger i matematikk, Representasjoner, Tallforståelse
Denne artikkelen bygger på artikkelen Å utvikle elevers begrepsforståelse (Kerstin Pettersson og Gerd Brandell, 2017). Der finner man eksempel på terskelbegrepene funksjon og derivert. Denne artikkelen inneholder et par andre eksempler på terskelbegrep, brøk og sannsynlighet. Den har eksempler på hva som kan gå galt i overgangsfasen og gir noen tips til hva man kan gjøre for å hjelpe elevene over…
Når elevene begynner på et nytt klassetrinn eller en ny skole etter sommerferien, er ofte de første matematikktimene satt av til repetisjon, og når påsken nærmer seg, stresser lærere for å bli ferdig med «pensum» for å ha nok tid til repetisjon og øving. Repetisjon og øving kan med andre ord legge beslag på store deler av skoleåret. Likevel er resultatene som oftest ikke så gode som vi ønsker.…
Allerede i barnehagen lærer barn om firkanter. De lærer uttrykk som kvadrat og rektangel og etter hvert også trapes, rombe og parallellogram. I barneskolen lærer elevene å beregne omkrets og areal til noen av disse firkantene. Dette læringsmålet blir senere gjentatt både på ungdomsskolen og på Vg1. Til tross for dette viser det seg at mange elever har mangelfull kunnskap om firkanter. …