Maria V. Bøe, Camilla Normann Justnes, Susanne Stengrundet
Argumentasjon, Dybdelæring
Denne artikkelen handler om begrepet «horisontkunnskap». Lærere med horisontkunnskap er oppmerksomme på kjernen i faget samtidig som de har øyne for den realfaglige horisonten. Horisontkunnskap er viktig for å skape god læring og undervisning i realfagene.
Teksten blir illustrert med eksempler fra matematikk og naturfag.
Ekte problemer krever den ekstra logiske prosessen med kreativitet, innsikt, overblikk og AHA! Artikkelen belyser flere typer spørsmål: Hva er problemløsing? Hvordan skiller problemløsing seg fra arbeid med «vanlige matematikkoppgaver»? Hva kjennetegner en god problemløser?
Matematikk i barnehagen, Problemløsing, Regnestrategier
I en problemløsingssituasjon er vi i ukjent terreng, der det ikke er åpenbart for oss hvordan vi kan løse et problem. Dette gjelder også barn. Allerede fra veldig ung alder engasjerer barn seg i utfordringer og problemer i ukjent terreng basert på et ønske om å oppnå noe.
Det er av stor betydning for senere effektivitet og fleksibilitet i møte med problemer at barn tidlig får…
Dybdelæring er et sentralt begrep i overordnet del av Læreplanverket, og kan brukes i forbindelse med læring i ulike fag. Men hva betyr det egentlig i matematikkfaget?
I denne artikkelen trekker vi fram fem sentrale komponenter i den matematiske læringsprosessen som kan beskrive hva dybdelæring i matematikk kan være.
Problemløsing, Utforskende og ambisiøs matematikkundervisning
Gjennom utforskende (inquiry basert) undervisning skal elevene utforske og undersøke en matematisk problemstilling. De skal planlegge løsningsmetoder, forklare og begrunne løsningene, og oppmuntres til å stille nye spørsmål som de skal prøve å finne svar på.
Utforskende undervisning skiller seg fra undervisning basert på et oppgaveparadigme, der elevene lærer hvordan de skal løse…
Allerede fra veldig ung alder engasjerer barn seg i utfordringer og problemer basert på et ønske om å oppnå noe. De lærer kanskje å krabbe for å nå fram til noe de har lyst på? Barn løser problemer helt naturlig med problemløsingsstrategier som å herme etter andre, prøve ut ting, gjøre mange feil og justerer strategiene sine deretter.
Når elevene begynner på et nytt klassetrinn eller en ny skole etter sommerferien, er ofte de første matematikktimene satt av til repetisjon, og når påsken nærmer seg, stresser lærere for å bli ferdig med «pensum» for å ha nok tid til repetisjon og øving. Repetisjon og øving kan med andre ord legge beslag på store deler av skoleåret. Likevel er resultatene som oftest ikke så gode som vi ønsker.…
Kommunikasjon og matematiske samtaler, Problemløsing, Utforskende og ambisiøs matematikkundervisning
Matematikksenteret har skrevet to artikler om problemløsing. Artikkelen "Å undervise matematisk problemløsing" av Svein H. Torkildsen er laget til MAM-programmet med eksempler knyttet til mellom- og ungdomstrinnet.
Denne artikkelen inneholder imidlertid noen flere problemløsingsstrategier og eksemplene er knyttet til både ungdomstrinn og videregående skole.
Allerede i barnehagen lærer barn om firkanter. De lærer uttrykk som kvadrat og rektangel og etter hvert også trapes, rombe og parallellogram. I barneskolen lærer elevene å beregne omkrets og areal til noen av disse firkantene. Dette læringsmålet blir senere gjentatt både på ungdomsskolen og på Vg1. Til tross for dette viser det seg at mange elever har mangelfull kunnskap om firkanter. …
Flervalgsoppgaver kan på lik linje med mange andre oppgaver gi muligheter for et læringsarbeid der vi søker å skape god forståelse av matematiske begreper, ideer, sammenhenger eller forhold.
I artikkelen viser vi to eksempler på flervalgsoppgaver og hvordan vi kan tenke oss å bruke dem i undervisningen. Vi ønsker å vise hvordan arbeid med flervalgsoppgaver kan hjelpe elevene til å…