Skolene er pålagt å gi elevene på 1. - 4. trinn intensiv opplæring når de står i fare for å bli hengende etter. Men hvordan planlegge innhold i intensiv opplæring? Forskning og erfaringer fra praksisfeltet viser at "fasemodellen" er et godt verktøy for å planlegge innhold i den intensive opplæringen.
Ever since Ball and Cohen (1999) called for a practice-based theory of teacher education the focus on practice-based pedagogy in research on mathematics teacher education has increased (e.g., Charalambous & Delaney, 2020). The need for a focus on practice-based teacher education is argued by McDonald et al. (2013), who described it as “a major shift—a turn away from a predominant focus on…
Argumentasjon, Dybdelæring, Kommunikasjon og matematiske samtaler
Kjerneelementene skal være bærende elementer i matematikkundervisningen, og fremhever viktige aspekter i undervisningen. Ett av kjerneelementene er resonnering og argumentasjon, som er en tilnærming mot det å utvikle matematiske bevis.
Denne teksten omhandler resonnering og argumentasjon på småtrinnet med oppgaver fra Kengurukonkurransen.
Observasjon er viktig i matematikkfaget, i andre fag og i dagliglivet. Erfaringer fra klasserommet har vist at elever strever med å observere i matematikk. De er usikre på hva som er relevant i en gitt situasjon og hva de skal se etter.
I denne artikkelen skal vi derfor se nærmere på observasjon og hvordan elever kan bli bedre til å observere.
Artikkelen er inspirert av 5 Practices for Orhestresting Productive Mathematics Discussions. I tillegg til de fem praksisene inneholder artikkelen også avsnitt om mål for undervisningen, valg av oppgave som fremmer målet, hvordan oppgaven kan presenteres og vurderinger læreren bør gjøre seg i etterkant av gjennomført undervisning.
Problemløsing, Utforskende og ambisiøs matematikkundervisning
Problemløsing har hatt en sentral plass i læreplaner for matematikk siden Mønsterplanen fra 1987. I LK20 løftes problemløsing fram gjennom kjerneelementet Utforsking og problemløsing. Elevene bør få eksplisitt opplæring i noen sentrale problemløsingsstrategier allerede fra de første skoleårene.
Mønster brukes i mange sammenhenger og på flere fagområder. I LK20, læreplan for matematikk, knyttes mønster til kjerneelementet Utforsking og problemløsing. Utforsking defineres som å lete etter mønster, finne sammenhenger og diskutere seg fram til en felles forståelse.
Camilla Normann Justnes, Ingunn Valbekmo, Svein H. Torkildsen
Kompetanseutvikling i matematikk, Organisasjonsutvikling, Representasjoner
Studier av overgangssituasjoner viser at alle overganger byr på muligheter som ansatte i barnehager og skoler kan gripe fatt i. I overgangen oppstår ofte et brudd i kontinuitet. Dersom ansatte i barnehagen og lærere i skolen sammen kan skape kontinuitet for barn og unge, vil det være med på å trygge overgangssituasjonene.
Når barnehager og skoler samarbeider om å skape sammenheng i…
Denne teksten tar utgangspunkt i en oppgave fra kengurukonkurransen. Det er endret på noen forutsetninger i oppgaven slik at det gir muligheter for dybdelæring. Teksten beskriver arbeid med denne oppgaven i ei økt med en 7.klasse.
Kompetanseutvikling i matematikk, Organisasjonsutvikling
The article focuses on Teacher Time Outs (TTOs) in rehearsals and co-enactments as part of a practice-based approach to professional development, aiming to support teachers’ learning of ambitious mathematics teaching.