Dybdelæring, Problemløsing, Utforskende og ambisiøs matematikkundervisning
Alle elever trenger å bli utfordret kognitivt i matematikkundervisningen, også elever som presterer lavt i matematikk. Oppgaver som stiller store kognitive krav, fremmer og utfordrer blant annet elevenes resonnement- og problemløsningskompetanse, og krever at elevene må bruke relevant forkunnskap og ulike representasjoner, og oppgavetypen fokuserer på å utvikle forståelse for matematiske begreper…
Skolene er pålagt å gi elevene på 1. - 4. trinn intensiv opplæring når de står i fare for å bli hengende etter. Men hvordan planlegge innhold i intensiv opplæring? Forskning og erfaringer fra praksisfeltet viser at "fasemodellen" er et godt verktøy for å planlegge innhold i den intensive opplæringen.
Når du som lærer velger oppgaver og problemstillinger som du ønsker at elevene skal arbeide med, på hvilket grunnlag tar du valget ditt? Hva ser du etter? Har du tenkt gjennom hva det kan være lurt å legge merke til?
Jeg vil vise eksempler på hva det er med enkelte oppgaver som gjør at de for meg peker seg ut som interessante.
Problemløsing, Utforskende og ambisiøs matematikkundervisning
Problemløsing har hatt en sentral plass i læreplaner for matematikk siden Mønsterplanen fra 1987. I LK20 løftes problemløsing fram gjennom kjerneelementet Utforsking og problemløsing. Elevene bør få eksplisitt opplæring i noen sentrale problemløsingsstrategier allerede fra de første skoleårene.
Det finnes likehetstrekk mellom noen av oppgavene i Kengurukonkurransen. I enkelte oppgaver brukes terninger på en eller annen måte, andre har tallkort eller pusselbrikker som etfelles element. Oppgaver med skålvekter eller kjøkkenvekter, er likhetstrekket mellom de oppgavene jeg her vil se nærmere på.
Oppgaver med skålvekter eller kjøkkenvekter, er likhetstrekket mellom de oppgavene jeg her vil se nærmere på. Jeg ønsker å trekke fram noen problemløsningsstrategier jeg mener er spesielle for denne type oppgaver.
Kunnskap om hvordan elever utvikler sine strategier, gir deg som lærer et redskap for å vurdere hvor elevene er i sin utvikling og hvordan eleven kan utvikle sine strategier videre.
Denne artikkelen er en omarbeiding av artikkelen «Barns strategier i arbeid med tall» (Svingen, 2016) og hovedfokuset her vil være på hvordan elever utvikler tallfaktakunnskap. Målet er at elever…
Kommunikasjon og matematiske samtaler, Problemløsing, Representasjoner, Utforskende og ambisiøs matematikkundervisning
I denne artikkelen presenteres en problemløsingsoppgave som brukes til å gi elevene muligheter for resonnement og problemløsing, til å bruke og utvikle matematiske representasjoner, bli oppmuntret til meningsfulle matematiske samtaler, oppleve at det å streve lenge med en oppgave og gjøre feil underveis kan bidra til ny innsikt og læring, og at samarbeid med andre elever gir stor gevinst, både…
I denne artikkelen vil vi gi et eksempel på hvordan GeoGebra kan brukes når elevene skal lære om rotasjon. Vi vil vise hvordan elevene kan få varierte erfaringer ved å bruke programmet, og hvordan arbeidet kan foregå i tråd med kjerneelementene i forslaget til ny læreplan (LK20).