Matematiske begrep, ideer og strategier blir uttrykt ved hjelp av ulike representasjoner. Det er fordi de er abstrakte og må derfor representeres på et eller annet vis for at man skal kunne arbeide med dem. Representasjoner kan være tallsymbol, tallinjer, geometriske figurer, tabeller, diagrammer, grafer, tegninger og beskrivelser med naturlig språk. Å forstå og bruke ulike representasjoner er en…
Regneark har lenge vært brukt i skolen, oftest til økonomiske beregninger. Men regneark er også et godt hjelpemiddel til å modellere andre situasjoner. Når elevene lager egne regneark er utforsking, problemløsing og generalisering sentralt. Oversiktlige diagrammer er ofte bare et tastetrykk unna og sammen med muligheten for fargede celler, rader og kolonner kan regneark gi god støtte i…
Et mål for matematikkundervisningen er at elevene skal få en god begrepsforståelse. Det innebærer at elevene ikke bare kjenner til ordene, men også vet hvorfor de kan bruke et gitt begrep i en bestemt situasjon. Artikkelen gir eksempler på hva læreren bør ta stilling til i arbeid med matematiske begreper.
Helt siden det ble obligatorisk med digitale verktøy til eksamen, har GeoGebra hatt en sterk plass i den norske skolen. Programmet har likevel ikke fått den plassen det fortjener. Det kan brukes til mer enn å tegne og tolke grafer.
Denne artikkelen skal vise hvordan man kan bruke programmet til å oppnå dybdelæring gjennom utforskning og resonnering.
Tegn og symboler har stor betydning når man skal arbeide med og forstå matematikk. En representasjon er ikke identisk med det matematiske objektet.
Denne teksten har fokus på arbeid med ulike representasjoner, slik at elevene ser det matematiske objektet på ulike måter, og dermed utvikler god forståelse av hva det matematiske objektet er.
Maria V. Bøe, Camilla Normann Justnes, Susanne Stengrundet
Argumentasjon, Dybdelæring
Denne artikkelen handler om begrepet «horisontkunnskap». Lærere med horisontkunnskap er oppmerksomme på kjernen i faget samtidig som de har øyne for den realfaglige horisonten. Horisontkunnskap er viktig for å skape god læring og undervisning i realfagene.
Teksten blir illustrert med eksempler fra matematikk og naturfag.
Misoppfatninger i matematikk, Matematiske tema, Tallforståelse
Denne teksten fokuserer på misoppfatninger innen området Tallregning. Vi vil vise eksempler på diagnostiske oppgaver, gi korte analyser av oppgavene, og eksempel på elevsvar som kan tyde på at elever er i misoppfatninger.
Oppgavene kartlegger misoppfatninger knyttet til forståelsen av brøkbegrepet, og er utviklet og prøvd ut av Matematikksenteret.
Misoppfatninger i matematikk, Matematiske tema, Tallforståelse
Denne teksten fokuserer på misoppfatninger innen området Tallregning. Vi vil vise eksempler på diagnostiske oppgaver, gi korte analyser av oppgavene, og eksempel på elevsvar som kan tyde på at elever er i misoppfatninger. Artikkelen bygger videre på artikkelen "Misoppfatninger knyttet til tall".
Oppgavene er utviklet og prøvd ut av Matematikksenteret. Oppgavene tester om…
Misoppfatninger i matematikk, Matematiske tema, Tallforståelse
Denne teksten fokuserer på misoppfatninger innen området Tall. Vi vil vise eksempler på diagnostiske oppgaver, gi korte analyser av oppgavene, og eksempel på elevsvar som kan tyde på at elever er i misoppfatninger.
Oppgavene til er utviklet og prøvd ut av en prosjektgruppe ved Matematikksenteret. Oppgavene tester om elevene forstår oppbyggingen av posisjonssystemet (prinsippet om…
Misoppfatninger i matematikk, Matematiske tema, Tallforståelse, Vurdering og kartlegging
En av vanskelighetene med brøk er at begrepet kan ha mange betydninger, og elevene møter alle disse ulike betydningene i dagliglivet. Elevene kjenner til uttrykk som ”halvparten", ”en tredel” og ”et kvarter” før de begynner på skolen, men det er ikke sikkert de har noen forståelse for innholdet i uttrykkene.
Denne artikkelen belyser fire ulike problemområder elevenes…