Hopp til hovedinnhold

Secondary navigation

  • Aktuelt
  • Om senteret
  • Nettbutikk
  • English
Logo for Matematikksenteret Logo for matematikksenteret

Main navigation

  • Aktiviteter
  • Faglitteratur
  • Forskning
  • Utviklingssamarbeid
  • Konferanser og nettverk
  • Konkurranser
  • Ressurser for skole og barnehage
  • Yrkesfag
  • Nasjonal satsing - Meningsfull matematikk

Mobile menu

  • Aktiviteter
  • Faglitteratur
  • Forskning
  • Utviklingssamarbeid
  • Konferanser og nettverk
  • Konkurranser
  • Ressurser for skole og barnehage
  • Yrkesfag
  • Nasjonal satsing - Meningsfull matematikk
  • Aktuelt
  • Om senteret
  • Nettbutikk
  • English
Icon/CalculatorArrow-circleIcon/PuzzleIcon/CaretIcon/CaretIcon/CheckedIcon/ClockIcon/DownloadIcon/ExternalIcon/FacebookIcon/FilmIcon/GalleryIcon/GrunnskoleIcon/HamburgerIcon/ImageIcon/ListIcon/XLyspære_transparentIcon/MailIcon/MinusIcon/PDFIcon/PersonPerson_transparentPersoner_transparentIcon/PlusIcon/PrinterPuslespill_transparentSnakkebobler_transparentSpørsmålstegn_transparentIcon/Tag-pinTriangleIcon/TwitterIcon/DiplomIcon/WordIcon/ansatteIcon/arbeidspakkerIcon/besoksadressecheckbox-checkedcheckbox-uncheckedIcon/close-whiteelektro_transparentIcon/errorevighet_transparentfraktaler_transparentgraf_transparentgresk_transparentgrid-whiteGeogebra - Grunnskole v3handlekurvhjerne_transparentIcon/hvemsvarerGeoGebra - KikoraIcon/Light bulbIcon/TrophyIcon/Glasseslinjal_gradskive_transparentlinjer_transparentlist-whiteIcon/Bookpasser_transparentIcon/phoneIcon/postadresseGroup 2GroupIcon/DirectionIcon/ressurspersonerIconsirkel_transparentTemateselering_transparenttetraeder_transparenttrekant_transparentvinkel_transparentvolum_transparent

Navigasjonssti

Du er her: Hjem Publikasjoner

Publikasjoner

130 treff

Filtrer og søk i publikasjoner

Forskningsomrade
  • Argumentasjon
  • Dybdelæring
  • GeoGebra
  • Kommunikasjon og matematiske samtaler
  • Kompetanseutvikling i matematikk
  • Matematikk i barnehagen
  • Matematikkvansker
  • Matematiske tema
  • Misoppfatninger i matematikk
  • Organisasjonsutvikling
  • Problemløsing
  • Programmering og algoritmisk tenking
  • Regnestrategier
  • Representasjoner
  • Tallforståelse
  • Tilpassa opplæring
  • Utforskende og ambisiøs matematikkundervisning
  • Vurdering og kartlegging
Type
  • Artikkel
  • Miniartikkel
  • Notat
  • Bok-kapittel
Nullstill søk
Minimer

Hvordan ser det ut, det som vi ikke ser?

Anne-Gunn Svorkmo
Argumentasjon, Problemløsing
2015
Elevene i en sjetteklasse hadde deltatt i Kengurukonkurransen. I etterkant fikk de tilbake hver sin besvarelse som var rettet og registrert, uten at læreren hadde markert hva som var riktig eller galt på arket. Elevene hadde ingen hjelp fra rettinga til å se hvilke svar som var riktige.

Denne teksten tar for seg noen oppgaver, og hvilken tilnærming noen av elevene hadde til dem.

Nykomlingen

Anne-Gunn Svorkmo
Dybdelæring, Problemløsing
2016
En nykomling er i denne sammenhengen en oppgave eller en oppgaveidé som tidligere ikke har vært med i Kengurukonkurransen. Jeg har vist fram og diskutert oppgaven med flere kolleger, og mange av dem har heller ikke løst en slik oppgave. Så det er kanskje ikke bare i kengurusammenheng at dette er en nykomling. Har du sett oppgaven eller noe som ligner, tidligere?

Sammen kan vi få det til!

Anne-Gunn Svorkmo
Dybdelæring, Problemløsing
2016
For at kenguruoppgaver i størst mulig grad skal være tilpasset til elever på ulike nivå, finnes det forskjellige oppgavesett. Likevel kan mange av oppgavene i alle de tre oppgavesettene brukes på kryss og tvers uavhengig av nivå og trinn. Når oppgaveideen er god eller problemstillingen interessant, er det ofte bare små justeringer som skal til for at oppgaven kan brukes på høyere eller lavere…

Temabaserte problemløsingsoppgaver

Anne-Gunn Svorkmo
Problemløsing
2016
Oppgavene i Kengurukonkurransen er delt inn i fire kategorier; tall, algebra, geometri og logiske oppgaver. Kategorien geometri kan igjen deles i to- og tredimensjonale figurer, symmetri, måling, areal og omkrets osv. Hvis man går gjennom tidligere oppgavesett og velger ut noen oppgaver som for eksempel dreier seg om omkrets, vil man få et lite sett med problemløsingsoppgaver med ulike…

Hva er det minste eller hva er det største?

Anne-Gunn Svorkmo
Problemløsing
2017
Oppgaver hvor det spørres etter et minste antall eller et største antall av noe, er i utgangspunktet oppgaver med mer enn én løsning. I lærebøker i matematikk for grunnskolen finnes det ikke mange oppgaver av denne typen.

Blant kenguruoppgavene finnes det mange oppgaver hvor det spørres etter det minste eller det største antallet, og jeg vil i denne artikkelen vise noen eksempler…

Problemløsing med omkrets og areal

Anne-Gunn Svorkmo
Problemløsing
2012
Flere kenguruoppgaver handler om areal og omkrets. Noen av oppgavene har en problemstilling det kan være verdt å se litt nærmere på. Jeg har valgt ut oppgaver som kan egne seg til å arbeide med som problemløsingsoppgaver i små grupper.

Kenguruoppgaver - når sifrene bytter plass

Anne-Gunn Svorkmo
Dybdelæring, Problemløsing
2012
Flere kenguruoppgaver handler om sifrenes plassering i et flersifret tall. Jeg viser noen eksempler og skisserer noen idéer hvordan denne type oppgaver kan videreutvikles.

Utforsking med kenguruoppgaver

Anne-Gunn Svorkmo
Utforskende og ambisiøs matematikkundervisning
2021
Mange av oppgavene fra Kengurukonkurransen er problemløsningsoppgaver som egner seg til å bruke i den ordinære matematikkundervisningen. Oppgavene dekker fagemnene tall og algebra, geometri og logikk.

Ligningssett i kontekst

Anne-Gunn Svorkmo
Problemløsing, Regnestrategier
2021
Oppgaver med skålvekter eller kjøkkenvekter, er likhetstrekket mellom de oppgavene jeg her vil se nærmere på. Jeg ønsker å trekke fram noen problemløsningsstrategier jeg mener er spesielle for denne type oppgaver.

Hva kan det være verdt å merke seg ved valg av oppgaver?

Anne-Gunn Svorkmo
Dybdelæring, Problemløsing
2022
Når du som lærer velger oppgaver og problemstillinger som du ønsker at elevene skal arbeide med, på hvilket grunnlag tar du valget ditt? Hva ser du etter? Har du tenkt gjennom hva det kan være lurt å legge merke til?

Jeg vil vise eksempler på hva det er med enkelte oppgaver som gjør at de for meg peker seg ut som interessante.

Sider

  • Forrige side ‹‹
  • Side 1
  • Side 2
  • Nåværende side 3
  • Side 4
  • Side 5
  • Side 6
  • Side 7
  • Side 8
  • Side 9
  • Neste side ››

Logo for NTNU

Postadresse

Matematikksenteret, NTNU
7491 Trondheim

Besøksadresse

Lysholmbygget,
E.C. Dahlsgt. 2, 2. etg.

E-post

kontakt@matematikksenteret.no

Kjernetid

09:00 - 15:00

Hold deg oppdatert!

Få nyheter og info om aktiviteter og læringsressurser gjennom vårt nyhetsbrev.
Meld deg på her

Personvernerklæring

Tilgjengelighetserklæring