Et mål for matematikkundervisningen er at elevene skal få en god begrepsforståelse. Det innebærer at elevene ikke bare kjenner til ordene, men også vet hvorfor de kan bruke et gitt begrep i en bestemt situasjon. Artikkelen gir eksempler på hva læreren bør ta stilling til i arbeid med matematiske begreper.
I matematikk brukes mange ulike uttrykksformer som representasjoner for matematiske begrep, ideer og strategier. Matematiske begrep og ideer er abstrakte, derfor må de representeres på et eller annet vis for at man skal kunne arbeide med dem. Representasjoner kan være tallsymbol, tallinjer, geometriske figurer, tabeller, diagrammer, grafer, tegninger og beskrivelser med naturlig språk. Å forstå…
Fra høsten 2020 er programmering en del av skolefaget matematikk. Det medfører at mange matematikklærere må sette seg inn i et nytt fagfelt. Programmering innebærer å designe og planlegge, skrive, teste, feilsøke og optimalisere kildekoden til et dataprogram.
Denne artikkelen trekker frem noen sentrale begrep knyttet til programmeringsfaget – og ikke alle er ukjente for…
Oppgaveløsingen har tradisjonelt en sentral rolle i matematikkundervisningen, og en sentral del av matematikklærerens arbeid er valg eller utforming av oppgaver elevene skal arbeide med. Oppgavene elevene får arbeide med har stor betydning for hva de lærer og hvor motivert de blir for faget.
Stein og Smith (1998) skiller mellom matematikkoppgaver som stiller lave kognitive krav og…
Utvikling av tallforståelse framheves i mange studier som svært viktig for elevenes læring av matematikk. Men det er ikke åpenbart hva tallforståelse innebærer.
I artikkelen presenteres det en kort beskrivelse av fem komponenter i matematisk kompetanse, og det drøftes ulike aspekter ved tallforståelse innen hver komponent. De ulike aspektene er utviklet gjennom en gjennomgang av…
En oppgavestreng er en sekvens med 4-6 relaterte regnestykker som er designet for å engasjere elever i en diskusjon om en gitt strategi i arbeid med en regneoperasjon. Aktiviteten kan også brukes i diskusjon om en egenskap ved regneoperasjonen uten at den egenskapen nødvendigvis brukes som en strategi i beregningen av de aktuelle regnestykkene.
Hva er det spesielle en matematikklærer bør kunne, men som en matematiker ikke trenger å kunne og en lærer i et annet fag ikke trenger å kunne?
Teksten beskriver to ulike rammeverk, undervisningskunnskap i matematikk (UKM) og kunnskapskvartetten (KQ). De har hatt stor betydning både for hvordan vi ser på matematikklærerkompetanse og for forskning og utvikling knyttet til dette…
Kommunikasjon og matematiske samtaler, Regnestrategier, Representasjoner, Tallforståelse
Utvikling av tallforståelse framheves i mange studier som svært viktig for elevers matematikklæring, men det er ikke åpenbart hva tallforståelse innebærer.
Dette er del 1 i en serie på fire artikler i Tangenten der ulike aspekter ved tallforståelse på mellomtrinnet knyttet til hver av de fem komponentene av matematisk kompetanse blir presentert og drøftet. Artiklene viser hvordan…
Kommunikasjon og matematiske samtaler, Regnestrategier, Representasjoner, Tallforståelse
Utvikling av tallforståelse framheves i mange studier som svært viktig for elevers matematikklæring, men det er ikke åpenbart hva tallforståelse innebærer.
Dette er del 2 i en serie på fire artikler i Tangenten der ulike aspekter ved tallforståelse på mellomtrinnet knyttet til hver av de fem komponentene av matematisk kompetanse blir presentert og drøftet. Artiklene viser hvordan…