Ekte problemer krever den ekstra logiske prosessen med kreativitet, innsikt, overblikk og AHA! Artikkelen belyser flere typer spørsmål: Hva er problemløsing? Hvordan skiller problemløsing seg fra arbeid med «vanlige matematikkoppgaver»? Hva kjennetegner en god problemløser?
Et mål for matematikkundervisningen er at elevene skal få en god begrepsforståelse. Det innebærer at elevene ikke bare kjenner til ordene, men også vet hvorfor de kan bruke et gitt begrep i en bestemt situasjon. Artikkelen gir eksempler på hva læreren bør ta stilling til i arbeid med matematiske begreper.
I matematikk brukes mange ulike uttrykksformer som representasjoner for matematiske begrep, ideer og strategier. Matematiske begrep og ideer er abstrakte, derfor må de representeres på et eller annet vis for at man skal kunne arbeide med dem. Representasjoner kan være tallsymbol, tallinjer, geometriske figurer, tabeller, diagrammer, grafer, tegninger og beskrivelser med naturlig språk. Å forstå…
Fra høsten 2020 er programmering en del av skolefaget matematikk. Det medfører at mange matematikklærere må sette seg inn i et nytt fagfelt. Programmering innebærer å designe og planlegge, skrive, teste, feilsøke og optimalisere kildekoden til et dataprogram.
Denne artikkelen trekker frem noen sentrale begrep knyttet til programmeringsfaget – og ikke alle er ukjente for…
Oppgaveløsingen har tradisjonelt en sentral rolle i matematikkundervisningen, og en sentral del av matematikklærerens arbeid er valg eller utforming av oppgaver elevene skal arbeide med. Oppgavene elevene får arbeide med har stor betydning for hva de lærer og hvor motivert de blir for faget.
Stein og Smith (1998) skiller mellom matematikkoppgaver som stiller lave kognitive krav og…
Utvikling av tallforståelse framheves i mange studier som svært viktig for elevenes læring av matematikk. Men det er ikke åpenbart hva tallforståelse innebærer.
I artikkelen presenteres det en kort beskrivelse av fem komponenter i matematisk kompetanse, og det drøftes ulike aspekter ved tallforståelse innen hver komponent. De ulike aspektene er utviklet gjennom en gjennomgang av…
Maria V. Bøe, Camilla Normann Justnes, Susanne Stengrundet
Argumentasjon, Dybdelæring
Det er stor enighet om at læreren både må kunne sitt fag og klare å legge til rette for elevenes læring. I teorien «Undervisningskunnskap i matematikk» løftes viktige sider ved den spesialiserte kunnskapen en matematikklærer bør ha fram. I denne teksten vil vi se på denne teorien med et realfaglig perspektiv.
I denne artikkelen ser vi spesielt på kategorien «horisontkunnskap…
Argumentasjon, Kommunikasjon og matematiske samtaler, Matematikk i barnehagen
Barn er nysgjerrig og vil gjerne utforske hvordan ting henger sammen for å forstå verden. Det å se sammenhenger er viktig for forståelse og innsikt. Naturfag fokuserer spesielt på sammenhenger i naturen, og matematikk forteller oss hvordan vi kan undersøke sammenhenger.
Denne teksten belyser hvorfor vi sorterer, og tar for seg aspektene klassifisering og ordning innenfor sortering.